精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2
3
sin(π-ωx)cosωx+cos(π+2ωx)(ω>0)的最小正周期为π,
(1)求f(x)的单调增区间;
(2)若a∈[0,
π
4
]时有f(a)=
6
5
,试求cos2a的值.
考点:三角函数中的恒等变换应用
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先利用恒等变换求出f(x)=2sin(2ωx-
π
6
)以最小正周期为突破口求出函数的解析式,进一步确定单调区间.
(2)根据f(a)=
6
5
,进一步利用三角关系式解得:cos(2α-
π
6
)=
4
5
,再利用角的变换求的结果.
解答: 解:(1)f(x)=2
3
sin(π-ωx)cosωx+cos(π+2ωx)=
3
sin2ωx-cos2ωx=2sin(2ωx-
π
6
),
由于函数的最小正周期为π,
解得:ω=1,
所以:f(x)=2sin(2x-
π
6
);
令:2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
(k∈Z),
解得:-
π
6
+kπ≤x≤
π
3
+kπ
(k∈Z),
故单调递增区间为:x∈[-
π
6
+kπ,
π
3
+kπ]
(k∈Z);
(2)f(a)=
6
5

所以:sin(2α-
π
6
)=
3
5

2α-
π
6
∈[-
π
6
π
3
]

cos(2α-
π
6
)=
4
5

cos2α=cos[(2α-
π
6
)+
π
6
]=cos(2α-
π
6
)cos
π
6
-sin(2α-
π
6
)sin
π
6
=
4
3
-3
10

故答案为:(1)x∈[-
π
6
+kπ,
π
3
+kπ]
(k∈Z).
(2)cos2α=
4
3
-3
10
点评:本题考查的知识要点:三角函数的恒等变换,正弦型函数解析式的求法,函数的单调区间,及三角函数的值和角的变换问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x2-ax+3a)在区间(2,+∞)上单调增,则函数y=2a的值域
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列方程,并回答问题:
①x2-1=0;②x2+x-2=0;③x2+2x-3=0;④x2+3x-4=0;….
(1)请你根据这列方程的特点写出第n个方程;
(2)直接写出第2009个方程的根;
(3)说出这列方程的根的一个共同特点.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l:y=kx-
3
与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是(  )
A、[
π
6
π
3
)
B、[
π
6
π
2
]
C、(
π
3
π
2
)
D、(
π
6
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程sinx+
3
cosx-a=0有实数解,则实数a的取值范围是(  )
A、[-2,2]
B、(-2,2)
C、[-1,1]
D、[-1-
3
,1+
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an+1=an+2+an,a1=2,a2=5,则a2014的值是(  )
A、3B、-5C、-2D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列几个式子,①tan25°+tan35°+
3
tan25°tan35°,②
1+tan15°
1-tan15°
,③2(sin35°cos25°+sin55°cos65°).结果为
3
的是(  )
A、①②B、①③C、①②③D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x-1
3x+1
(x∈R).
(1)求函数f(x)的值域;
(2)判断函数f(x)的奇偶性;
(3)用定义判断函数f(x)的单调性;
(4)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)0.064 -
1
3
-(-
7
8
0+[(-2)3] -
4
3
-5 log52+16-0.75+|-0.01| 
1
2

(2)(log25-log4125)
log32
log
3
5

查看答案和解析>>

同步练习册答案