精英家教网 > 高中数学 > 题目详情
3.在四面体ABCD中,若AB=AD,CD=BC,求证:AC⊥BD.

分析 化为等腰三角形内部证明垂直,从而证明BD⊥平面ACE,得到结论.

解答 证明:如图,设BD中点为E,连接AE、CE,
∵△ABD为等腰三角形,
∴AE⊥BD;
同理CE⊥BD.
∴BD⊥平面ACE,
∴BD⊥AC.

点评 本题考查了线面垂直的判定与性质,考查了空间想象能力和推论论证能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,其左焦点与抛物线C:y2=-4x的焦点相同.
(1)求此椭圆的方程;
(2)若过此椭圆的右焦点F的直线l与曲线C只有一个交点P,则
①求直线l的方程;
②椭圆上是否存在点M(x,y),使得S△MPF=$\frac{1}{2}$,若存在,请说明一共有几个点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=CD,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)求证:PA∥平面EDB;
(Ⅱ)求证:PB⊥平面EFD;
(Ⅲ)求二面角P-BC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为$\frac{3}{4}$;向乙靶射击一次命中的概率为$\frac{2}{3}$,该射手每次射击的结果相互独立,假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试,若两次命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试
(1)求该射手通过测试的概率
(2)求该射手在这次测试中命中的次数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知长方体ABCD-A1B1C1D1的体积为216,则四面体AB1CD1与四面体A1BC1D的重叠部分的体积为36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a-$\frac{1}{x}$-lnx(a∈R).
(1)若a=2,求函数f(x)在(1,e2)上的零点个数(e为自然对数);
(2)若f(x)恰有一个零点,求a的取值集合;
(3)若f(x)有两零点x1,x2(x1<x2),求证:2<x1+x2<3ea-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点F(0,1),直线l1:y=-1,直线l1⊥l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H.设点H的轨迹为曲线r.
(Ⅰ)求曲线r的方程;
(Ⅱ)过点P作曲线r的两条切线,切点分别为C,D,
(ⅰ)求证:直线CD过定点;
(ⅱ)若P(1,-1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究$\frac{|PQ|}{|PA|}$+$\frac{|PQ|}{|PB|}$是否为定值?若是,求出该定值;不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设命题p:x2-3x+2<0,q:$\frac{x-1}{x-2}$≤0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.变量 x,y 满足约束条件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,则z=2x-y的最大值为(  )
A.-1B.1C.4D.6

查看答案和解析>>

同步练习册答案