精英家教网 > 高中数学 > 题目详情
17.设等差数列{an}的前n项和为Sn,已知a6=S3=6
(1)求an和Sn
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,若b1,b2,b5成等比数列,求实数λ的值.

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,可得b1,b2,b5.由b1,b2,b5成等比数列,可得${b}_{2}^{2}$=b1•b5,解出即可.

解答 解:(1)设等差数列的公差为d,∵a6=S3=6,∴$\left\{\begin{array}{l}{{a}_{1}+5d=6}\\{3{a}_{1}+\frac{3×2}{2}d=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=1}\end{array}\right.$,
∴an=1+(n-1)=n,${S}_{n}=\frac{n(1+n)}{2}$.
(2)∵数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,
∴b1=S1=a1=1,
b2=S3-λS1=$\frac{3×(1+3)}{2}$-λ=6-λ;
b5=S9-λS7=$\frac{9×(1+9)}{2}$-$λ×\frac{7×(1+7)}{2}$=45-28λ.
∵b1,b2,b5成等比数列,
∴${b}_{2}^{2}$=b1•b5
∴(6-λ)2=1×(45-28λ),
化为λ2+16λ-9=0,
解得λ=$-8±\sqrt{73}$.

点评 本题考查了递推式的应用、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设a、b、c分别表示△ABC的内角A、B、C的对边,若a2-b2=$\sqrt{3}$bc,sinC=2$\sqrt{3}$sinB,则∠A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,实数x,y满足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l,α,β是两个不同的平面,以下四个命题:
①若l∥α,l∥β,则α∥β;
②若l⊥α,l∥β,则α⊥β;
③若l⊥α,l⊥β,则α∥β;
④若l⊥α,α⊥β,则l∥β,
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解一种植物的生长情况,抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示
(1)求该植物样本高度的平均数$\overrightarrow{x}$和样本方差s2(同一组中的数据用该组区间的中点值作代表)
(2)假设该植物的高度Z服从正态分布N(μ,a2),其中μ近似为平均数$\overrightarrow{x}$,a2近似为样本方差s2,利用该正态分布求P(64.5<Z<96)
附:$\sqrt{110}$≈10.5,若Z~N(μ,a2),则P(μ-?<Z<μ+?)=0.6826,P(μ-2?<Z<μ+2?)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],若f(x1)>f(x2),则下列不等式一定成立的是(  )
A.x12>x22B.x1+x2>0C.x1>x2D.x12<x22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系内,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.曲线C的极坐标方程是ρ=2cosθ,直线l的参数方程是$\left\{\begin{array}{l}x=-3+\frac{{\sqrt{3}}}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数).若M,N分别为曲线C与直线l上的动点,则|MN|的最小值为(  )
A.$\sqrt{2}$+1B.3$\sqrt{2}$-1C.$\sqrt{2}$-1D.3$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{1}{3}$x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,则实数m的取值范围是$\frac{17}{9}$.

查看答案和解析>>

同步练习册答案