精英家教网 > 高中数学 > 题目详情
5.已知直线l,α,β是两个不同的平面,以下四个命题:
①若l∥α,l∥β,则α∥β;
②若l⊥α,l∥β,则α⊥β;
③若l⊥α,l⊥β,则α∥β;
④若l⊥α,α⊥β,则l∥β,
其中正确命题的个数为(  )
A.1B.2C.3D.4

分析 对四个命题分别进行判断,即可得出结论.

解答 解:①若α∩β=m,l∥m,则l∥α,l∥β,故不正确;
②由题意l⊥α,当l∥β时,必存在β内的直线l′,使l∥l′,可得l′⊥α,由面面垂直的判定定理可得α⊥β,正确;
③若l⊥α,l⊥β,利用垂直于同一直线的两个平面平行,可得α∥β,正确;
④当l⊥α,且α⊥β时,可能l?β,故不能推出l∥β,故不正确;
故选:B.

点评 本题考查空间直线与平面之间的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足$\left\{\begin{array}{l}{y≤3}\\{x-y-2≤0}\\{3x-2y-6≥0}\end{array}\right.$则$\frac{y-2}{x-y}$的取值范围为(  )
A.[$\frac{1}{2}$,1]B.(-∞,-1]∪[1,+∞)C.[-1,1]D.[-1,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l:x-y=0被圆:(x-a)2+y2=1截得的弦长为$\sqrt{2}$,则实数a的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cosα=k,k∈R,α∈($\frac{π}{2}$,π),则sin(π+α)=(  )
A.-$\sqrt{1-{k}^{2}}$B.$\sqrt{1-{k}^{2}}$C.±$\sqrt{1-{k}^{2}}$D.-k

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线2x2-y2=1的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若将函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的图象向左平移$\frac{π}{6}$个单位后,得到的图象关于直线x=$\frac{π}{6}$对称,则ω的最小值为(  )
A.$\frac{1}{2}$B.1C.2D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设等差数列{an}的前n项和为Sn,已知a6=S3=6
(1)求an和Sn
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,若b1,b2,b5成等比数列,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在极坐标系中,点A(2,$\frac{π}{3}$)与曲线ρcosθ=2上的点的最短距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tanα=2,求$\frac{sin(α+\frac{π}{3})}{cos(α-\frac{π}{4})}$的值.

查看答案和解析>>

同步练习册答案