精英家教网 > 高中数学 > 题目详情
16.直线l:x-y=0被圆:(x-a)2+y2=1截得的弦长为$\sqrt{2}$,则实数a的值为±1.

分析 由题意利用弦长公式求得弦心距,再利用点到直线的距离公式求得弦心距,由此建立方程求得a的值.

解答 解:由题意利用弦长公式求得弦心距d=$\sqrt{{1}^{2}{-(\frac{\sqrt{2}}{2})}^{2}}$=$\frac{\sqrt{2}}{2}$,再利用点到直线的距离公式可得d=$\frac{|a-0|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
由此求得a=±1,
故答案为:±1.

点评 本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知角A=60°.
(1)若sinC+cosC=$\sqrt{3}$cosB,求角B的大小;
(2)若a=$\sqrt{3}$,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设a、b、c分别表示△ABC的内角A、B、C的对边,若a2-b2=$\sqrt{3}$bc,sinC=2$\sqrt{3}$sinB,则∠A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知a,b都是正数,且a≠b,求证:a3+b3>a2b+ab2
(2)已知a,b,c都是正数,求证:$\frac{{{a^2}{b^2}+{b^2}{c^2}+{c^2}{a^2}}}{a+b+c}$≥abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线C1:$\left\{\begin{array}{l}{x=-1+t}\\{y=-1+at}\end{array}\right.$(t为参数)与圆C2:ρ=2交于A、B两点,当|AB|最小时,a的取值为(  )
A.4B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-2),则双曲线的焦距为(  )
A.$6\sqrt{5}$B.$3\sqrt{5}$C.$6\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,实数x,y满足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l,α,β是两个不同的平面,以下四个命题:
①若l∥α,l∥β,则α∥β;
②若l⊥α,l∥β,则α⊥β;
③若l⊥α,l⊥β,则α∥β;
④若l⊥α,α⊥β,则l∥β,
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

同步练习册答案