精英家教网 > 高中数学 > 题目详情
8.已知a>0,实数x,y满足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.

解答 解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最小,此时z最小.
即2x+y=1,
由$\left\{\begin{array}{l}{x=1}\\{2x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,
即C(1,-1),
∵点C也在直线y=a(x-3)上,
∴-1=-2a,
解得a=$\frac{1}{2}$.
故选:C.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.执行如图所示的程序框图,输出结果S的值是$\frac{100}{201}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.已知同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a,球的半径为R.设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan(α+β)的值是$-\frac{4\sqrt{3}}{3a}R$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l:x-y=0被圆:(x-a)2+y2=1截得的弦长为$\sqrt{2}$,则实数a的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图的程序的框图,则输出S=(  )
A.30B.50C.60D.70

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cosα=k,k∈R,α∈($\frac{π}{2}$,π),则sin(π+α)=(  )
A.-$\sqrt{1-{k}^{2}}$B.$\sqrt{1-{k}^{2}}$C.±$\sqrt{1-{k}^{2}}$D.-k

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线2x2-y2=1的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设等差数列{an}的前n项和为Sn,已知a6=S3=6
(1)求an和Sn
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,若b1,b2,b5成等比数列,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数$α∈[0,\frac{π}{2}$)∪($\frac{π}{2},π$)),以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$sin($θ+\frac{π}{4}$)
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若曲线C与直线交于A,B两点,且|AB|=$\sqrt{6}$,求tanα的值.

查看答案和解析>>

同步练习册答案