18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý$¦Á¡Ê[0£¬\frac{¦Ð}{2}$£©¡È£¨$\frac{¦Ð}{2}£¬¦Ð$£©£©£¬ÒÔÔ­µãΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨$¦È+\frac{¦Ð}{4}$£©
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÇúÏßCÓëÖ±Ïß½»ÓÚA£¬BÁ½µã£¬ÇÒ|AB|=$\sqrt{6}$£¬Çótan¦ÁµÄÖµ£®

·ÖÎö £¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¬ÏûÈ¥²ÎÊýtµÃy=£¨x+1£©tan¦Á£®ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨$¦È+\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ¦Ñ2=2¦Ñcos¦È+2¦Ñsin¦È£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÓÉÔ²CµÄÔ²ÐÄΪC£¨1£¬1£©£¬°ë¾¶r=$\sqrt{2}$£®ÀûÓõ㵽ֱÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½¿ÉµÃ£ºÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$=$\sqrt{2-£¨\frac{\sqrt{6}}{2}£©^{2}}$£¬»¯¼ò½â³ö¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¬ÏûÈ¥²ÎÊýtµÃy=£¨x+1£©tan¦Á£®
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨$¦È+\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ¦Ñ2=2¦Ñcos¦È+2¦Ñsin¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌµÃx2+y2-2x-2y=0£¬¼´£¨x-1£©2+£¨y-1£©2=2£®
£¨2£©¡ßÔ²CµÄÔ²ÐÄΪC£¨1£¬1£©£¬°ë¾¶r=$\sqrt{2}$£®
ÔòÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$=$\sqrt{2-£¨\frac{\sqrt{6}}{2}£©^{2}}$=$\frac{\sqrt{2}}{2}$£¬
»¯¼òµÃ7tan2¦Á-8tan¦Á+1=0£¬½âÖ®µÃtan¦Á=1»òtan¦Á=$\frac{1}{7}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ÏÒ³¤¹«Ê½¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªa£¾0£¬ÊµÊýx£¬yÂú×㣺$\left\{\begin{array}{l}{x¡Ý1}\\{x+y¡Ü3}\\{y¡Ýa£¨x-3£©}\end{array}\right.$£¬Èôz=2x+yµÄ×îСֵΪ1£¬Ôòa=£¨¡¡¡¡£©
A£®2B£®1C£®$\frac{1}{2}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÄÚ£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£®ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=2cos¦È£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-3+\frac{{\sqrt{3}}}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.£¨t$Ϊ²ÎÊý£©£®ÈôM£¬N·Ö±ðΪÇúÏßCÓëÖ±ÏßlÉϵ͝µã£¬Ôò|MN|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$+1B£®3$\sqrt{2}$-1C£®$\sqrt{2}$-1D£®3$\sqrt{2}$-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôº¯Êýf£¨x£©=2x3-3mx2+6xÔÚÇø¼ä£¨2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬2£©B£®£¨-¡Þ£¬2]C£®£¨-¡Þ£¬$\frac{5}{2}$£©D£®£¨-¡Þ£¬$\frac{5}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®É躯Êýf£¨x£©=|x-a|+1£¬a¡ÊR
£¨1£©µ±a=4ʱ£¬½â²»µÈʽf£¨x£©£¼1+|2x+1|
£¨2£©Èôf£¨x£©¡Ü2µÄ½â¼¯Îª[0£¬2]£¬$\frac{1}{m}$+$\frac{1}{n}$=a£¨m£¾0£¬n£¾0£©ÇóÖ¤£ºm+2n¡Ý3+2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏA={x|x2£¼4}£¬B={x|-1¡Üx¡Ü4}£¬ÔòA¡ÈB=£¨¡¡¡¡£©
A£®{x|-1¡Üx£¼2}B£®{x|-2£¼x¡Ü4}C£®{x|-1¡Üx£¼4}D£®{x|-4£¼x¡Ü4}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®É輯ºÏA={x|x2-3x-4£¼0£¬x¡ÊN}£¬B={x|$\frac{3x-11}{x-2}$¡Ü2£¬x¡ÊN*}£¬C={£¨x£¬y£©|x¡ÊA£¬y¡ÊB}£¬ÔÚ¼¯ºÏCÖÐËæ»úÈ¡³öÒ»¸öÔªËØ£¨x£¬y£©
£¨¢ñ£©Ð´³ö¼¯ºÏCÖÐËùÓÐÔªËØ£¨x£¬y£©£»
£¨¢ò£©Çóx+y¡Ü6µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}$x3-2x2+3m£¬x¡Ê[0£¬+¡Þ£©£¬Èôf£¨x£©+5¡Ý0ºã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ$\frac{17}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èôº¯Êýf£¨x£©=x3+2x2+mx+1ÔÚ£¨-¡Þ£¬+¡Þ£©ÄÚµ¥µ÷µÝÔö£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®m$¡Ý\frac{4}{3}$B£®m£¾$\frac{4}{3}$C£®m¡Ü$\frac{4}{3}$D£®m$£¼\frac{4}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸