精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,则m的取值范围是(  )
A.m$≥\frac{4}{3}$B.m>$\frac{4}{3}$C.m≤$\frac{4}{3}$D.m$<\frac{4}{3}$

分析 根据函数f(x)在(-∞,+∞)内单调递增,得出f′(x)≥0恒成立,利用判别式△≤0,求出m的取值范围.

解答 解:∵函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,
∴f′(x)=3x2+4x+m≥0恒成立,
即△=16-4×3m≤0,
解得m≥$\frac{4}{3}$;
∴m的取值范围是m≥$\frac{4}{3}$.
故选:A.

点评 本题考查了利用导数判断函数的单调性问题,也考查了一元二次不等式的恒成立问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数$α∈[0,\frac{π}{2}$)∪($\frac{π}{2},π$)),以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$sin($θ+\frac{π}{4}$)
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若曲线C与直线交于A,B两点,且|AB|=$\sqrt{6}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在四边形ACBD中,将点A沿着$\overrightarrow{a}$=(-1,3)方向平移得点B,将$\overrightarrow{OC}$=(cosα,sinα)绕着坐标原点O顺时针旋转$\frac{π}{2}$得到$\overrightarrow{OD}$,若四边形ACBD的对角线相互垂直,则tanα=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn=2n+2-4.
(1)求数列{an}的通项公式;
(2)设bn=•log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a(x-$\frac{1}{x}$)-lnx(x∈R).
(1)若a=1,求曲线y=f(x)在点(1,f(x))处的切线方程;
(2)若函数f(x)在其定义域内为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线y2=4x的焦点F的直线l交抛物线于A,B两点.若AB中点M到抛物线准线的距离为6,则线段AB的长为(  )
A.6B.9C.12D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{1}{2}$x+cosx,x∈[0,2π]的单调减区间为($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=ex(ax2-7x+13),其中a∈R,曲线y=f(x)在点(1,f(1))处的切线l与直线l′:2ex-y+e=0平行.
(1)求a的值及切线l方程;
(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\frac{1}{2}$x2-mlnx在($\frac{1}{2}$,+∞)内单调递增,则实数m的取值范围是(  )
A.m=$\frac{1}{4}$B.0<m<$\frac{1}{4}$C.m≥$\frac{1}{4}$D.m≤$\frac{1}{4}$

查看答案和解析>>

同步练习册答案