精英家教网 > 高中数学 > 题目详情
15.过抛物线y2=4x的焦点F的直线l交抛物线于A,B两点.若AB中点M到抛物线准线的距离为6,则线段AB的长为(  )
A.6B.9C.12D.无法确定

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.

解答 解:抛物线y2=4x的焦点坐标(1,0),p=2.
设A(x1,y1) B(x2,y2
抛物y2=4x的准线x=-1,线段AB中点到抛物线的准线的距离为6,
即有$\frac{1}{2}$(x1+x2)=5,
∴x1+x2=10,
∴|AB|=|AF|+|BF|=x1+x2+p=10+2=12,
故选C.

点评 本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2<4},B={x|-1≤x≤4},则A∪B=(  )
A.{x|-1≤x<2}B.{x|-2<x≤4}C.{x|-1≤x<4}D.{x|-4<x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且∠A:∠B:∠C=1:2:6,求证:$\frac{a}{b}$=$\frac{a+b}{a+b+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x+$\frac{{3{a^2}}}{x}$-2alnx在区间(1,2)上单调递增,则实数a的取值范围.
A.[-$\frac{1}{3}$,1]B.[-1,$\frac{1}{3}$]C.[$\frac{1}{3}$.$\frac{2}{3}$]D.[$\frac{1}{3}$,1](

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,则m的取值范围是(  )
A.m$≥\frac{4}{3}$B.m>$\frac{4}{3}$C.m≤$\frac{4}{3}$D.m$<\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lnx+ln(2-x)+x的单调递增区间是(0,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{2}$x2-(1+a)x+alnx,
(1)当a=3时,求函数f(x)的极值点;
(2)当a>0时,若方程f(x)=t恰有三个不同的根,试求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-$\frac{1}{2}{x^2}$-ax(a∈R),在x=1时取得极值.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若方程f(x)=-$\frac{3}{2}$x+b在区间[1,3]上有两个不等实数根,求实数b取值范围.
(Ⅲ)若函数h(x)=f(x)-x2,利用h(x)的图象性质,证明:3(12+22+…+n2)>ln(12•22•…•n2)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=$\frac{1}{3}$,a2=1,且[2+(-1)n+1]an+2=an+(-1)n+1(n∈N*),设bn=a2n-1,cn=a2n
(1)求数列{bn}和{cn}的通项公式;
(2)令dn=bn•cn,记数列{dn}的前n项和为Tn,求证Tn<1.

查看答案和解析>>

同步练习册答案