精英家教网 > 高中数学 > 题目详情
13.已知cosα=k,k∈R,α∈($\frac{π}{2}$,π),则sin(π+α)=(  )
A.-$\sqrt{1-{k}^{2}}$B.$\sqrt{1-{k}^{2}}$C.±$\sqrt{1-{k}^{2}}$D.-k

分析 由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.

解答 解:∵cosα=k,k∈R,α∈($\frac{π}{2}$,π),
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-{k}^{2}}$,
∴sin(π+α)=-sinα=-$\sqrt{1-{k}^{2}}$.
故选:A.

点评 本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,证明:
(1)(b+c+d)2≤2b2+3c2+6d2
(2)|a-$\frac{3}{2}$|≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知a,b都是正数,且a≠b,求证:a3+b3>a2b+ab2
(2)已知a,b,c都是正数,求证:$\frac{{{a^2}{b^2}+{b^2}{c^2}+{c^2}{a^2}}}{a+b+c}$≥abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-2),则双曲线的焦距为(  )
A.$6\sqrt{5}$B.$3\sqrt{5}$C.$6\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,实数x,y满足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知p:α是第一象限角,q:α<$\frac{π}{2}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l,α,β是两个不同的平面,以下四个命题:
①若l∥α,l∥β,则α∥β;
②若l⊥α,l∥β,则α⊥β;
③若l⊥α,l⊥β,则α∥β;
④若l⊥α,α⊥β,则l∥β,
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],若f(x1)>f(x2),则下列不等式一定成立的是(  )
A.x12>x22B.x1+x2>0C.x1>x2D.x12<x22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2<4},B={x|-1≤x≤4},则A∪B=(  )
A.{x|-1≤x<2}B.{x|-2<x≤4}C.{x|-1≤x<4}D.{x|-4<x≤4}

查看答案和解析>>

同步练习册答案