精英家教网 > 高中数学 > 题目详情
18.已知p:α是第一象限角,q:α<$\frac{π}{2}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:若α=$\frac{7π}{3}$,满足在第一象限,但α<$\frac{π}{2}$不成立,
若α=0,满足α<$\frac{π}{2}$,但α在第一象限不成立,
故p是q的既不充分也不必要条件,
故选:D

点评 本题主要考查充分条件和必要条件的判断,根据角与象限之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知x>1,y>1,log2x+log2y=log2(x+y),log2x+log2y+log2z=log2(x+y+z),则z的范围为(  )
A.[1,$\frac{4}{3}$)B.(1,$\frac{4}{3}$)C.(1,$\frac{4}{3}$]D.[--$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-2≤0}\\{y≥-3}\end{array}\right.$,则目标函数z=x-y的最大值(  )
A.-2B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数列{an}的前n项和为Sn,对任意正整数n都有4an-3Sn=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n-1$\frac{4(n+1)}{{{{log}_2}{a_n}{{log}_2}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cosα=k,k∈R,α∈($\frac{π}{2}$,π),则sin(π+α)=(  )
A.-$\sqrt{1-{k}^{2}}$B.$\sqrt{1-{k}^{2}}$C.±$\sqrt{1-{k}^{2}}$D.-k

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知公比为q的等比数列{an},满足a1+a2+a3=-8.a4+a5+a6=1,则$\frac{{a}_{1}}{1-q}$=$-\frac{64}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若将函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的图象向左平移$\frac{π}{6}$个单位后,得到的图象关于直线x=$\frac{π}{6}$对称,则ω的最小值为(  )
A.$\frac{1}{2}$B.1C.2D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3},|{\overrightarrow a}|=3,|{\overrightarrow b}|=2,\overrightarrow c=3\overrightarrow a+5\overrightarrow b,\overrightarrow d=m\overrightarrow a-3\overrightarrow b$若$\overrightarrow c⊥\overrightarrow d$,则实数m=(  )
A.$\frac{29}{14}$B.-$\frac{29}{14}$C.$\frac{29}{7}$D.-$\frac{29}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2x+alnx(a∈R).
(Ⅰ)当a=2时,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的单调区间;
(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案