精英家教网 > 高中数学 > 题目详情

【题目】已知向量,若的方向是沿方向绕着点按逆时针方向旋转角得到的,则称经过一次变换得到.已知向量经过一次变换后得到经过一次变换后得到,如此下去,经过一次变换后得到,设,则__________.

【答案】

【解析】

由题意可得经过一次变换得到,相当于一次旋转变换,利用矩阵变换得出,分别求得三次变换后得到的向量坐标,再由,可得向量经过2019变换后得到,即可得到所求值.

解:由题意可得经过一次变换得到,相当于一次旋转变换

而向量经过一次变换后得到

即为,可得向量

向量经过一次变换后得到

即有,可得向量

向量经过一次变换后得到

即为,可得向量

可得再经过三次变换后得到的向量坐标为

则向量经过2019变换后得到

可得

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为,且

(Ⅰ)求

(Ⅱ)若,如图,为线段上一点,且,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线)与交于两点,的中点,为坐标原点.

1)求直线斜率的最大值;

2)若点在直线上,且为等边三角形,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,将曲线绕极点逆时针旋转后得到曲线.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)若直线分别相交于异于极点的两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x+1).

(1)0<f(1-2x)-f(x)<1,求实数x的取值范围;

(2)g(x)是以2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),当x∈[1,2]时,求函数y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆上顶点为A,右焦点为F,直线与圆相切,其中.

1)求椭圆的方程;

2)不过点A的动直线l与椭圆C相交于PQ两点,且,证明:动直线l过定点,并且求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满的前项和为,且满足.数列满足.

1)求数列的通项公式;

2)记数列满足设数列的前项和为,数列的前项和为,试比较的大小

查看答案和解析>>

同步练习册答案