精英家教网 > 高中数学 > 题目详情
已知扇形的圆心角为
π
3
,它的半径r=3,则该扇形的面积为(  )
A、3π
B、
9
2
π
C、
3
2
π
D、
2
3
π
考点:扇形面积公式
专题:三角函数的求值
分析:已知了扇形的圆心角和半径长,可直接根据扇形的面积公式求解.
解答: 解:扇形的圆心角为
π
3
,即圆心角为60°,
扇形的面积为=
60π•32
360
=
3
2
π.
故选:C.
点评:本题考查扇形的面积公式=
nπr2
360
.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在斜三棱柱ABC-A1B1C1中,A0,B0分别为侧棱AA1,BB1上的点,且知BB0=A0A1,过A0,B0,C1的截面将三棱柱分成上下两个部分体积之比为(  )
A、2:1B、4:3
C、3:2D、1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinωx(ω>0)的图象在y轴右边的第一条对称轴的方程x=1,则ω=(  )
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是(  )
A、18
3
B、36
3
C、45
3
D、54
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R,a<0)对于一切实数x都有f(1-x)=f(1+x),而且f(-1)<0,f(0)>0,则有(  )
A、a+b+c<0
B、c<2b
C、abc>0
D、b<a+c

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AD是BC边上的高,给出下列结论:①
AD
•(
AB
-
AC
)=0;②|
AB
+
AC
|≥2|
AD
|;③
AC
AD
|
AD
|
=|
AB
|sinB.其中结论正确的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱椎P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是(  )
A、AD⊥平面PBC且三棱椎D-ABC的体积为
8
3
B、BD⊥平面PAC且三棱椎D-ABC的体积为
8
3
C、AD⊥平面PBC且三棱椎D-ABC的体积为
16
3
D、BD⊥平面PAC且三棱椎D-ABC的体积为
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.
(Ⅰ)若g(x)在(1,g(1))处的切线l与直线x-3y-5=0垂直,求a的值;
(Ⅱ)求f(x)在x∈[0,2]上的最小值;
(Ⅲ)试探究能否存在区间M,使得f(x)和g(x)在区间M上具有相同的单调性?若能存在,说明区间M的特点,并指出f(x)和g(x)在区间M上的单调性;若不能存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求曲线y=
2x
x2+1
在点(1,1)处的切线方程;
(2)运动曲线方程为S=
t-1
t2
+2t2,求t=3时的速度.

查看答案和解析>>

同步练习册答案