精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos2x+
3
sin2x,x∈R.
(1)求f(x)的最小正周期及最大值;
(2)求f(x)的单调递增区间.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)利用二倍角公式和两角和公式对函数解析式化简,进而根据周期公式求得函数的最小正周期,根据正弦函数的性质求得函数的最大值.
(2)利用整体法根据正弦函数的单调性求得函数的单调递增区间.
解答: 解:(1)f(x)=cos2x+1+
3
sin2x=2sin(2x+
π
6
)+1,
∴T=
2
=π,f(x)max=2+1=3.
(2)由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,求得kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
∴函数的单调递增区间为[得kπ-
π
3
,kπ+
π
6
](k∈Z).
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.解题时可注意与正弦函数图象相结合来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

经统计,某校学生上学路程所需要时间全部介于0与50之间(单位:分钟),现从在校学生中随机抽取100人,按上学所需时间分组如下:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得到如图所示的频率分布直方图.
(Ⅰ)根据图中数据求a的值;
(Ⅱ)若从第3,4,5组中用分层柚样的方法抽取6人参与交通安全问卷调查,应从这三组中各抽取几人?
(Ⅲ)在(Ⅱ)的条件下,若从这6人中随机抽取2人参加交通安全宣传活动,求第4组至少有1人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

用分析法证明:若a>b>0,m>0,则
a
b
a+m
b+m

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下
产品编号A1A2A3A4A5
质量指标(x,y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)
产品编号A6A7A8A9A10
质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样品中,随机抽取两件产品,设“取出的2件产品的综合指标之差的绝对值”为随机变量ξ
求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).
(1)求数列的通项公式an
(2)求和:a2+a5+a8+…+a92
(3)求
n
k=1
|ak|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是函数f(x)=sinωx的图象C的一个对称中心,若点P到图象C的对称轴的最小值是
π
8
,则f(x)的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司近年来科研费用支出x万元与公司所获得利润y万元之间有如下的统计数据:
x2345
Y18273235
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y
=
b
x+
a

(Ⅱ)试根据(2)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:若变量x和y用最小二乘法求出y关于x的线性回归方程为:
y
=
b
x+
a
,其中:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n(
.
x
)2
a
=
.
y
-
b
.
x
,参考数值:2×18+3×27+4×32+5×35=420.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程2cos2x-sinx-a=0有实根,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知物体的运动方程为s=t2+
3
t
(t是时间,s是位移),则物体在时刻t=2时的速度为
 

查看答案和解析>>

同步练习册答案