精英家教网 > 高中数学 > 题目详情
1.抛物线x2=-2y的焦点坐标是(  )
A.(-1,0)B.(1,0)C.$(0,-\frac{1}{2})$D.$(0,\frac{1}{2})$

分析 由x2=-2py(p>0)的焦点坐标为(0,-$\frac{p}{2}$),则抛物线x2=-2y的焦点坐标即可得到.

解答 解:由x2=-2py(p>0)的焦点坐标为(0,-$\frac{p}{2}$),
则抛物线x2=-2y的焦点坐标是(0,-$\frac{1}{2}$),
故选C.

点评 本题考查抛物线的方程和性质,主要考查抛物线的焦点坐标,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知8个非零实数a1,a2,a3,a4,a5,a6,a7,a8,向量$\overrightarrow{O{A_1}}=({a_1},\;{a_2})$,$\overrightarrow{O{A_2}}=({a_3},\;{a_4})$,$\overrightarrow{O{A_3}}=({a_5},\;{a_6})$,$\overrightarrow{O{A_4}}=({a_7},\;{a_8})$,给出下列命题:
①若a1,a2,…,a8为等差数列,则存在i,j(1≤i,j≤8,i≠j,i,j∈N*),使$\overrightarrow{O{A_1}}$+$\overrightarrow{O{A_2}}$+$\overrightarrow{O{A_3}}$+$\overrightarrow{O{A_4}}$与向量$\overrightarrow{n}$=(ai,aj)共线;
②若a1,a2,…,a8为公差不为0的等差数列,向量$\overrightarrow{n}$=(ai,aj)(1≤i,j≤8,i≠j,i,j∈N*),$\overrightarrow{q}$=(1,1),M={y|y=$\overrightarrow{n}$•$\overrightarrow{q}$},则集合M的元素有12个;
③若a1,a2,…,a8为等比数列,则对任意i,j(1≤i,j≤4,i,j∈N*),都有$\overrightarrow{O{A_i}}$∥$\overrightarrow{O{A_j}}$;
④若a1,a2,…,a8为等比数列,则存在i,j(1≤i,j≤4,i,j∈N*),使$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$<0;
⑤若$\overrightarrow{m}$=$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$(1≤i,j≤4,i≠j,i,j∈N*),则$\overrightarrow{m}$的值中至少有一个不小于0.
其中所有真命题的序号是①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四点A(3,-1),B(-1,1),C(3,5),D(5,9),判断直线AB与CD的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的通项公式an=n2-7n-8.
(1)数列中有多少项为负数?
(2)数列{an}是否有最小项?若有,求出其最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若抛物线x2=ay的焦点坐标为(0,2),则实数a的值为(  )
A.-8B.-4C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点F为抛物线C:y2=2px(p>0)的焦点,M(4,t)为抛物线C上的点,且|MF|=5,则抛物线C的方程为(  )
A.y2=xB.y2=2xC.y2=4xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线y2=2px(p>0)的焦点为F,A点在抛物线上,且A的横坐标为4,|AF|=5.
(1)求抛物线的方程;
(2)设l为过(4,0)点的任意一条直线,若l交抛物线于A,B两点,求证:以AB为直径的圆必过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sinωx(ω>0)在区间[$-\frac{π}{3},\frac{π}{4}$]上的最小值是-1,则ω的最小值为(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

同步练习册答案