分析 (1)根据分段函数的单调性的性质进行求解即可,
(2)根据p为假命题,q为真命题时,求出对应的a的范围,进行求解即可.
解答 解:(1)若q为真命题,则由题意得$\left\{{\begin{array}{l}{2-a<0}\\{{{(\frac{1}{2})}^0}-2≥(2-a)•0}\end{array}}\right.$,得a>2.…(6分)
(2)命题p为真命题时实数a满足:△=a2-4•2a≥0,得a≥8,a≤0,…(9分)
若p为假命题,q为假命题时,则实数a满足$\left\{{\begin{array}{l}{0<a<8}\\{a>2}\end{array}}\right.$,得2<a<8. …(13分)
点评 本题主要考查命题的真假判断,涉及复合命题的真假关系,求出命题为真命题的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{2}$ | B. | $1-\sqrt{2}$ | C. | $3+2\sqrt{2}$ | D. | $3-2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{3}$,$\frac{π}{2}$] | B. | [$\frac{π}{6}$,$\frac{π}{2}$] | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | [$\frac{π}{4}$,$\frac{3π}{8}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若向量$\overrightarrow a=(x,y)$,向量$\overrightarrow b=(-y,x)$(xy≠0),则$\overrightarrow a⊥\overrightarrow b$ | |
| B. | 若四边形ABCD为菱形,则$\overrightarrow{AB}=\overrightarrow{DC}\;,\;且|\overrightarrow{AB}|=|\overrightarrow{AD}|$ | |
| C. | 点G是△ABC的重心,则$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$ | |
| D. | △ABC中,$\overrightarrow{AB}$和$\overrightarrow{CA}$的夹角等于A |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com