精英家教网 > 高中数学 > 题目详情
3.已知数列{an}是等比数列且数列{|an|}是递增数列,a2+a3=2,a1a4=-8,则a2016=(  )
A.$\frac{1}{{2}^{2015}}$B.-$\frac{1}{{2}^{2015}}$C.-22015D.22015

分析 由已知得a2,a3是方程x2-2x-8=0的两个根,解方程x2-2x-8=0,得a2=-2,a3=4,由此求出首项和公比,从而能求出a2016

解答 解:∵数列{an}是等比数列且数列{|an|}是递增数列,a2+a3=2,a1a4=-8,
∴a1a4=a2a3=-8,
∴a2,a3是方程x2-2x-8=0的两个根,
解方程x2-2x-8=0,得a2=-2,a3=4,
∴q=$\frac{{a}_{3}}{{a}_{2}}=-2$,${a}_{1}=\frac{{a}_{2}}{q}$=1,
∴a2016=${a}_{1}{q}^{2015}$=(-2)2015=-22015
故选:C.

点评 本题考查等比数列的第2016项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设命题p:?x0∈(0,+∞),e${\;}^{{x}_{0}}$+x0=e,命题q:,若圆C1:x2+y2=a2与圆C2:(x-b)2+(y-c)2=a2相切,则b2+c2=2a2.那么下列命题为假命题的是(  )
A.¬qB.¬pC.(¬p)∨(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若一组样本数据8,12,10,11,9的平均数为10,则该组样本数据的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若样本的频率分布直方图如图所示,则样本数据的中位数等于(  )
A.30B.40C.36.5D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a>0,a≠1,等比数列{an},a1=a,公比q=a,又数列{bn}的前n项和为Sn,Sn-Sn-1=lga${\;}_{n}^{{a}_{n}}$,(n≥2),b1=alga
(Ⅰ)求Sn
(Ⅱ)要使数列{bn}中的每一项总不大于它后面的项,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知公共汽车每7min一班,在车站停留1min,开走后再过7min第二辆车到站,则乘客到达车站立即可以上车的概率为(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.判断下列函数的奇偶性:
①y=$\sqrt{cosx-1}$
②y=$\sqrt{\frac{1-x}{1+x}}$
③y=lg(x+$\sqrt{1+{x}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x、y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,则z=32x-y的最大值为(  )
A.$\root{3}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z=(cosθ-$\frac{3}{5}$)+(sinθ-$\frac{4}{5}$)i是纯虚数,则tan(θ-$\frac{π}{4}$)的值为(  )
A.-7B.-$\frac{1}{7}$C.7D.-7或-$\frac{1}{7}$

查看答案和解析>>

同步练习册答案