| A. | $\root{3}{3}$ | B. | $\sqrt{3}$ | C. | 3 | D. | 9 |
分析 首先由约束条件画出可行域,令2x-y=t,利用t的几何意义求出最值,然后求z 的最值.
解答
解:约束条件对应的平面区域如图:
令2x-y=t,变形得y=2x-t,根据t的几何意义,由约束条件知t过A时在y轴的截距最大,使t最小,由$\left\{\begin{array}{l}{x-y=0}\\{x+2y=1}\end{array}\right.$得到交点A($\frac{1}{3}$,$\frac{1}{3}$)所以t最小为$\frac{1}{3}×1-\frac{1}{3}=\frac{1}{3}$;过C时直线y=2x-t在y轴截距最小,t最大,由$\left\{\begin{array}{l}{x+y=1}\\{x+2y=1}\end{array}\right.$解得C(1,0),所以t的最大值为2×1-0=2,所以$t∈[\frac{1}{3},2]$,故${z_{max}}={3^2}=9$;
故选D.
点评 本题考查了简单线性规划问题;利用数形结合的方法,借助于目标函数的几何意义求最值.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{2}^{2015}}$ | B. | -$\frac{1}{{2}^{2015}}$ | C. | -22015 | D. | 22015 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}+\frac{9}{10}$i | B. | $\frac{3}{10}-\frac{9}{10}i$ | C. | $-\frac{3}{10}+\frac{9}{10}i$ | D. | $\frac{17}{10}-\frac{1}{10}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{5}$+$\frac{2}{5}$i | B. | $\frac{1}{5}$-$\frac{2}{5}$i | C. | -$\frac{2}{5}$+$\frac{1}{5}$i | D. | $\frac{2}{5}$-$\frac{1}{5}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com