精英家教网 > 高中数学 > 题目详情
12.在等腰直角三角形ABC中,∠ACB=90°,在∠ACB内部任意作一条射线CM,与线段AB交于点M,则AM<AC的概率(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 由于过直角顶点C在∠ACB内部任作一射线CM,故可以认为所有可能结果的区域为∠ACB,可将事件A构成的区域为∠ACC',以角度为“测度”来计

解答 解:在AB上取AC'=AC,则∠ACC′=$\frac{180°-45°}{2}$=67.5°.
记A={在∠ACB内部任作一射线CM,与线段AB交于点M,AM<AC},
则所有可能结果的区域为∠ACB,
事件A构成的区域为∠ACC'.
又∠ACB=90°,∠ACC'=67.5°.
∴P(A)=$\frac{67.5°}{90°}$=$\frac{3}{4}$.
故选:C.

点评 本题考查了几何概型的概率求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=lg(ax-bx)(a>1>b>0),求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有一个女生参加的选法共有(  )
A.12种B.34种C.35种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=m+$\frac{2}{{2}^{x}+1}$(x∈R)是奇函数.
(1)求实数m的值.
(2)判断函数的单调性并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+$\frac{1}{4}$b2x(a,b∈R),若|a-1|+|b-1|≤1,求f′(x)在R上有零点的概率(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)(用综合法证明)
已知△ABC的内角A、B、C所对的边分别为a,b,c,且A、B、C成等差数列,a,b,c成等比数列,证明:△ABC为等边三角形.
(2)(用分析法证明)
设a,b,c为一个三角形的三边,s=$\frac{1}{2}$(a+b+c),且s2=2ab,试证:s<2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设Sn是等差数列{an}的前n项和,若S2=2,S4=10,则S6等于(  )
A.4B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果把两条平行的直线称为“一对”,那么在正方体的12条棱中,相互平行的直线共有(  )对.
A.6B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a2=b4=m(a>0,b>0),且a+b=6,则m等于16.

查看答案和解析>>

同步练习册答案