精英家教网 > 高中数学 > 题目详情
7.定义两种运算:a⊕b=$\sqrt{{a}^{2}-{b}^{2}}$,a?b=$\sqrt{(a-b)^{2}}$,则函数f(x)=$\frac{2⊕x}{(x?2)-2}$的解析式为f(x)=-$\frac{\sqrt{4-{x}^{2}}}{x}$,x∈[-2,0)∪(0,2].

分析 根据新运算,代入化简即可,注意自变量的取值范围.

解答 解:∵a⊕b=$\sqrt{{a}^{2}-{b}^{2}}$,a?b=$\sqrt{(a-b)^{2}}$,
f(x)=$\frac{2⊕x}{(x?2)-2}$=$\frac{\sqrt{4-{x}^{2}}}{\sqrt{(x-2)^{2}}-2}$=$\frac{\sqrt{4-{x}^{2}}}{2-x-2}$=-$\frac{\sqrt{4-{x}^{2}}}{x}$,x∈[-2,0)∪(0,2].
故答案为:f(x)=-$\frac{\sqrt{4-{x}^{2}}}{x}$,x∈[-2,0)∪(0,2].

点评 本题考查了解析式的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.比较下列各组数的大小.
(1)0.80.5与0.90.4; 
(2)0.30.4与0.40.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,求证:f(-x)=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=$\left\{\begin{array}{l}{(3a-4)x+3\\;x≤1}\\{\frac{a}{x}\\;x>1}\end{array}\right.$是R上的单调函数,则a的取值范围为[$\frac{1}{2}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)的定义域为[0,1),则函数f(x+1)的定义域为[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题:
(1){x|x2+4x-5=0}表示二次方程x2+4x-5=0的解集;
(2){x|x2+4x-5>0}表示二次不等式x2+4x-5>0的解集;
(3){x|y=x2+4x-5}表示二次函数y=x2+4x-5自变量组成的集合;
(4){x|x=t2+4t-5}表示二次函数x=t2+4t-5自变量组成的集合;
(5){(x,y)|$\left\{\begin{array}{l}{x+2y=1}\\{2x-y=-3}\end{array}\right.$}表示方程组$\left\{\begin{array}{l}{x+2y=1}\\{2x-y=-3}\end{array}\right.$的解集{-1,1}.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设S为实数集R的非空子集,若对任意x,y∈S,都有x+y∈S,xy∈S,则称S为闭集合,已知集合A={x|x=a+$\sqrt{2}$b,a、b∈N}.
(1)证明:集合A为闭集合;
(2)若集合B={x|x=$\sqrt{2}$x1,x1∈A},证明:B?A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{x-1}$+$\sqrt{1-x}$的奇偶性情况为非奇非偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$,则$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$=(  )
A.$\frac{32}{3}$B.-$\frac{8}{3}$C.$\frac{32}{3}$或-$\frac{8}{3}$D.-$\frac{32}{3}$或$\frac{8}{3}$

查看答案和解析>>

同步练习册答案