精英家教网 > 高中数学 > 题目详情
我国于2010年10月1日成功发射嫦娥二号卫星,卫星飞行约两小时到达月球,到达月球以后,经过几次变轨将绕月球以椭圆型轨道飞行,其轨迹是以月球的月心为一焦点的椭圆。若第一次变轨前卫星的近月点到月心的距离为m,远月点到月心的距离为n,第二次变轨后两距离分别为2m,2n.则第一次变轨前的椭圆离心率比第二次变轨后的椭圆离心率 (   )
A.变大B.变小C.不变D.与的大小有关
C
将月球的球心作为焦点,再由“卫星近月点到月心的距离为m,远月点到月心的距离为n”和“二次变轨后两距离分别为2m,2n”,可得到a+c,a-c,分别求得a,c,再求离心率后比较即得.
解:设长半轴为a,半焦距为c
第一次变轨前:
根据题意:

∴e=
同理,第二次变轨后,椭圆离心率e=
则第一次变轨前的椭圆离心率比第二次变轨后的椭圆离心率不变
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为,求此椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是长度为定值的平面的斜线段,点为斜足,若点在平面内运动,使得的面积为定值,则动点P的轨迹是

A.圆            B.椭圆         C一条直线      D两条平行线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,在平面直角坐标系中,,设的外接圆圆心为E.

(1)若⊙E与直线CD相切,求实数a的值;
(2)设点在圆上,使的面积等于12的点有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的右顶点为,点在椭圆上,且它的横坐标为1,点,且.
⑴求椭圆的方程;⑵若过点的直线与椭圆交于另一点,若线段的垂直平分线经过点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)如图,在直角坐标系中,三点在轴上,原点和点分别是线段的中点,已知为常数),平面上的点

(1)试求点的轨迹的方程;
(2)若点在曲线上,求证:点一定在某圆上;
(3)过点作直线,与圆相交于两点,若点恰好是线段的中点,试求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆经过点,则______,离心率______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
已知双曲线的中心在原点,左右焦点分别为,离心率为,且过点

(1)求此双曲线的标准方程;
(2)若直线系(其中为参数)所过的定点恰在双曲线上,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题:“椭圆的焦点在x轴上” ,命题:只有一个实数满足不等式. 若命题“p且q”是真命题,求实数a的值

查看答案和解析>>

同步练习册答案