精英家教网 > 高中数学 > 题目详情
.如图,在平面直角坐标系中,,设的外接圆圆心为E.

(1)若⊙E与直线CD相切,求实数a的值;
(2)设点在圆上,使的面积等于12的点有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.
解:(1)直线方程为,圆心,半径.
由题意得,解得……6分
(2)∵
∴当面积为时,点到直线的距离为
又圆心E到直线CD距离为(定值),要使的面积等于12的点有且只有三个,只须圆E半径,解得
此时,⊙E的标准方程为  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点及抛物线,若抛物线上点满足,则
的最大值为
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点到点的距离比它到直线的距离小1,则点的轨迹方程是( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,设点,以线段为直径的圆经过原点.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我国于2010年10月1日成功发射嫦娥二号卫星,卫星飞行约两小时到达月球,到达月球以后,经过几次变轨将绕月球以椭圆型轨道飞行,其轨迹是以月球的月心为一焦点的椭圆。若第一次变轨前卫星的近月点到月心的距离为m,远月点到月心的距离为n,第二次变轨后两距离分别为2m,2n.则第一次变轨前的椭圆离心率比第二次变轨后的椭圆离心率 (   )
A.变大B.变小C.不变D.与的大小有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
平面直角坐标系中,已知直线:,定点,动点到直线的距离是到定点的距离的2倍.
(1)求动点的轨迹的方程;
(2)若为轨迹上的点,以为圆心,长为半径作圆,若过点可作圆的两条切线,为切点),求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知双曲线和圆(其中原点为圆心),过双曲线上一点引圆的两条切线,切点分别为
(1)若双曲线上存在点,使得,求双曲线离心率的取值范围;
(2)求直线的方程;
(3)求三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为
A.B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、极坐标方程ρcos2θ=1所表示的曲线是 ( )
A.两条相交直线B.圆C.椭圆D.双曲线

查看答案和解析>>

同步练习册答案