精英家教网 > 高中数学 > 题目详情
5.在数列{an}中,已知a1+a2+…+an=3n-1(n∈N*),则a12+a22+…+a102=(  )
A.(310-1)2B.$\frac{{{9^{10}}-1}}{2}$C.910-1D.$\frac{{{3^{10}}-1}}{4}$

分析 设数列{an}的前n项和为Sn,则a1+a2+…+an=Sn=3n-1(n∈N*),利用递推关系可得:an=2×3n-1.于是${a}_{n}^{2}$=4×9n-1.再利用等比数列的前n项和公式即可得出.

解答 解:设数列{an}的前n项和为Sn,则a1+a2+…+an=Sn=3n-1(n∈N*),
∴当n=1时,a1=3-1=2,
当n≥2时,an=Sn-Sn-1=3n-1-(3n-1-1)=2×3n-1
当n=1时上式成立,
∴an=2×3n-1
∴${a}_{n}^{2}$=4×32n-2=4×9n-1
∴数列{${a}_{n}^{2}$}是等比数列,首项为4,公比为9.
则a12+a22+…+a102=$\frac{4({9}^{n}-1)}{9-1}$=$\frac{{9}^{10}-1}{2}$.
故选:B.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
273830373531
332938342836
(1)画出茎叶图.
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、极差,并判断选谁参加比赛更合适.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,bcosC+ccosB=asinA,则三角形ABC的形状是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,<$\overrightarrow a$,$\overrightarrow b$>=60°,则$\overrightarrow a$在2$\overrightarrow a+\overrightarrow b$方向上的正射影的数量是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义在区间[-1,1]上的函数f(x)=$\frac{ax}{1+{x}^{2}}$,且f(1)=-1.
(1)求实数a的值;
(2)证明:函数f(x)在区间(-1,1)上单调递减;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若直线l:$x-\sqrt{3}y+3=0$与圆C:x2-2ax+y2=0有交点,则直线l的斜率为$\frac{{\sqrt{3}}}{3}$,实数a的取值范围为(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆短轴的一个端点与两个焦点构成的三角形的面积为$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于A,B两点.
①若线段AB中点的横坐标为-$\frac{1}{2}$,求斜率k的值;
②若点M(-$\frac{11}{8}$,0),求证:$\overrightarrow{MA}•\overrightarrow{MB}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用五个数字0、1、1、2、2组成的五位数总共有(  )
A.24个B.30个C.36个D.48个

查看答案和解析>>

同步练习册答案