精英家教网 > 高中数学 > 题目详情
4.已知a,b,c是实数,写出命题“若a+b+c=0,则a,b,c中至少有两个负数”的等价命题:若a,b,c中至多有1个非负数,则a+b+c≠0.

分析 命题的逆否命题为若a,b,c中至多有1个非负数,则a+b+c≠0,即可得出结论.

解答 解:命题的逆否命题为若a,b,c中至多有1个非负数,则a+b+c≠0,
故答案为若a,b,c中至多有1个非负数,则a+b+c≠0.

点评 本题考查等价命题,考查命题的逆否命题的写法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.△ABC的内角A,B,C对的边为a,b,c,向量$\overrightarrow m=({a,\sqrt{3}b})$与$\overrightarrow n=({cosA,sinB})$平行.
(1)求角A;
(2)若a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,已知a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,记Sn为数列{an}的前n项和,则S2017=1009.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义在R上的函数f(x)满足f(x+2)=f(x),且在区间[-1,1)上,f(x)=$\left\{\begin{array}{l}x-m,-1≤x<0\\|x-\frac{2}{5}|,0≤x<1\end{array}$,其中m∈R,若$f(-\frac{5}{2})=f(\frac{9}{2})$,则f(5m)=$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.f(x)=ax2+bx+c(a≠0).
(Ⅰ)f(x)=x的二实根x1,x2,且0<x1<x2<$\frac{1}{a}$对x∈(0,x1),比较f(x)与x1的大小;
(Ⅱ)若|f(x)|<1的解集(-1,3),求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.关于x的不等式组$\left\{\begin{array}{l}ax<1\\ x-a<0\end{array}$的解集不是空集,则实数a的取值范围为[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知曲线y=$\frac{1}{2}$x+sinx,则此曲线在x=$\frac{π}{3}$处的切线方程为6x-6y+3$\sqrt{3}$-π=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知一条直线经过点$P({-2,\sqrt{3}})$,Q(-1,0),求直线PQ的方程.(用一般式表示)
(2)已知一条直线经过点P(2,3),且在x轴,y轴上的截距相等,求该直线的方程.(用一般式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$f(x)=arcsin({\frac{x}{3}-1})$的定义域为[0,6].

查看答案和解析>>

同步练习册答案