精英家教网 > 高中数学 > 题目详情
9.关于x的不等式组$\left\{\begin{array}{l}ax<1\\ x-a<0\end{array}$的解集不是空集,则实数a的取值范围为[-1,+∞).

分析 分类讨论,即可求出a的取值范围

解答 解:根据题意,x-a<0的解为x<a,
当a>0时,ax<1的解为x<$\frac{1}{a}$,
此时解集显然不为空集,
当a=0时,ax<1的解为R,
此时解集显然不为空集,
当a<0时,ax<1的解为x>$\frac{1}{a}$,
∵关于x的不等式组$\left\{\begin{array}{l}ax<1\\ x-a<0\end{array}$的解集不是空集,
∴$\frac{1}{a}$≤a,
即a2≤1,
解得-1≤a<0,
综上所述a的取值范围为[-1,+∞)
故答案为:[-1,+∞).

点评 本题考查空集的性质的运用,注意结合题意,关键是分类讨论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-ax2+8.
(1)若f(x)<0对?x∈[1,2]恒成立,求实数a的取值范围;
(2)是否存在整数a,使得函数g(x)=f(x)+4ax2-12a2x+3a3-8在区间(0,2)上存在极小值,若存在,求出所有整数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义在R上的偶函数,其导函数为f′(x),若f′(x)<f(x),且f(x+1)=f(3-x),f(2015)=2,则不等式f(x)<2ex-1的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为${P^'}(\frac{y}{{{x^2}+{y^2}}},\frac{-x}{{{x^2}+{y^2}}})$;当P是原点时,定义P的“伴随点”为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”,现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;
②若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;
③单位圆的“伴随曲线”是它自身;
④一条直线的“伴随曲线”是一条直线.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a,b,c是实数,写出命题“若a+b+c=0,则a,b,c中至少有两个负数”的等价命题:若a,b,c中至多有1个非负数,则a+b+c≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2+ex,则f'(1)=2+e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若m=60,n=40,按照如图所示的程序框图运行后,输出的结果是(  )
A.$\frac{1}{200}$B.200C.20D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知两点A(6,5)为圆心,$\sqrt{10}$为半径的圆的标准方程为(  )
A.(x-6)2+(y-5)2=10B.(x+6)2+(y+5)2=10C.(x-5)2+(y-6)2=$\sqrt{10}$D.(x+5)2+(y+6)2=$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.三角形的三条高的长度分别为$\frac{1}{13}$,$\frac{1}{10}$,$\frac{1}{5}$,则此三角形的形状是钝角三角形.

查看答案和解析>>

同步练习册答案