精英家教网 > 高中数学 > 题目详情
14.△ABC的内角A,B,C对的边为a,b,c,向量$\overrightarrow m=({a,\sqrt{3}b})$与$\overrightarrow n=({cosA,sinB})$平行.
(1)求角A;
(2)若a=2,求b+c的取值范围.

分析 (1)根据题意,由向量$\overrightarrow{m}$、$\overrightarrow{n}$平行,结合向量平行的坐标表示公式可得$asinB-\sqrt{3}bcosA=0$,进而变形可得$sinAsinb=\sqrt{3}sinBcosA$,即可得tanA的值,结合A的范围可得答案;
(2)根据题意,有a与A的值,结合正弦定理可得2R=$\frac{2}{sinA}$=$\frac{4\sqrt{3}}{3}$,进而可得b+c=2R(sinB+sinC),进而变形可得b+c=4sin(B+$\frac{π}{6}$),分析可得sin(B+$\frac{π}{6}$)的范围,计算可得b+c的范围.

解答 解:(1)根据题意,由于$\overrightarrow m=({a,\sqrt{3}b})$与$\overrightarrow n=({cosA,sinB})$平行,
则有$asinB-\sqrt{3}bcosA=0$,
∴$sinAsinb=\sqrt{3}sinBcosA$,
∵sinB≠0,
∴$tanA=\sqrt{3}$,
又由0<A<π,则A=$\frac{π}{3}$;
(2)a=2,A=$\frac{π}{3}$,
由正弦定理可得:2R=$\frac{2}{sinA}$=$\frac{4\sqrt{3}}{3}$;
∴$b+c=2R({sinB+sinC})=2R({sinB+sin({\frac{2π}{3}-B})})=4sin({B+\frac{π}{6}})$,
∵$0<B<\frac{2π}{3},\frac{π}{6}<B+\frac{π}{6}<\frac{5π}{6}$,
∴$\frac{1}{2}<sin({B+\frac{π}{6}})≤1$,
∴2<b+c≤4.

点评 题考查了正弦定理的应用,涉及向量平行的坐标表示公式和两角和差的正弦函数公式,关键是求出A的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-2ax(其中a∈R).
(Ⅰ)若函数f(x)的图象在x=1处的切线平行于直线x+y-2=0,求函数f(x)的最大值;
(Ⅱ)设g(x)=f(x)+$\frac{1}{2}$x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,则称f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下问题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②如果f(x)=lnx在区间[1,e]可被g(x)=x-b替代,则-2≤b≤2;
③设f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(a≠0)及区间D1,D2,使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题是(  )
A.①②③B.②③C.D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知三棱锥A-OCB中,AO⊥底面BOC,且∠BAO=∠CAO=$\frac{π}{6}$,AB=4,点D为线段AB的中点,记二面角B-AO-C的大小为θ.
(1)求三棱锥A-OCB体积V的最大值;
(2)当$θ=\frac{2π}{3}$时,求二面角C-OD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={y|y=x2},用自然语言描述M应为(  )
A.函数y=x2的函数值组成的集合B.函数y=x2的自变量的值组成的集合
C.函数y=x2的图象上的点组成的集合D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-ax2+8.
(1)若f(x)<0对?x∈[1,2]恒成立,求实数a的取值范围;
(2)是否存在整数a,使得函数g(x)=f(x)+4ax2-12a2x+3a3-8在区间(0,2)上存在极小值,若存在,求出所有整数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“m=1”是“函数f(x)=x2-6mx+6在区间(-∞,3]上为减函数”的(  )
A.充分必要条件B.既不充分又不必要条件
C.充分不必要条件D.必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=9x-3x+1+2(-1≤x≤1)的值域为(  )
A.$[{\frac{9}{19},2}]$B.[-1,2]C.$[{-\frac{1}{4},2}]$D.$[{-\frac{1}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a,b,c是实数,写出命题“若a+b+c=0,则a,b,c中至少有两个负数”的等价命题:若a,b,c中至多有1个非负数,则a+b+c≠0.

查看答案和解析>>

同步练习册答案