精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列{an}的前n项和为Sn , 点(an , Sn)(n∈N*)都在函数f(x)= 的图象上.
(1)求数列{an}的通项公式;
(2)若bn=an3n , 求数列{bn}的前n项和Tn

【答案】
(1)解:由题可得

当n≥2时,

所以

所以

所以(an+an1)(an﹣an1﹣2)=0

因为an>0

所以an﹣an1=2

当n=1时, ,所以

因为a1>0,所以a1=5

所以数列{an}是以5为首项,2为公差的等差数列.

所以an=5+2(n﹣1)=2n+3


(2)解:由(1)可得

所以

=

=6﹣(2n+2)3n+1

所以


【解析】(1)利用点与函数的关系,推出递推关系式,然后求解通项公式.(2)化简数列的通项公式,利用错位相减法求和即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的参数方程和直线的普通方程;

2)已知点是曲线上一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)若为真命题,求实数的取值范围;

2)若成立的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则Sn=尺.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,sinα=7m﹣3,sinβ=1﹣m,若α+β<2π,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,定点为圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)若经过的直线交曲线于不同的两点,(点在点, 之间),且满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点B是以AC为直径的圆周上的一点,PA=AB=BC,AC=4,PA⊥平面ABC,点E为PB中点.

(Ⅰ)求证:平面AEC⊥平面PBC;
(Ⅱ)求直线AE与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,△ACD是边长为1的等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于点E.
(1)求BD2的值;
(2)求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表

商店名称

A

B

C

D

E

销售额x(千万元)

3

5

6

7

9

利润额y(百万元)

2

3

3

4

5


(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.

查看答案和解析>>

同步练习册答案