| A. | (-$\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}$) | B. | [-$\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}$] | C. | [$-\sqrt{3},\sqrt{3}$] | D. | (-$\sqrt{3},\sqrt{3}$) |
分析 设过原点的圆的切线方程为y=kx,再根据圆心(2,0)到切线的距离等于半径,求得k的值,可得$\frac{y}{x}$的取值范围.
解答 解:由题意可得,$\frac{y}{x}$表示圆(x-2)2+y2=3上的点(x,y)与原点(0,0)连线的斜率,
设为k,故此圆的切线方程为y=kx,
再根据圆心(2,0)到切线的距离等于半径,可得r=$\frac{|2k-0|}{\sqrt{1+{k}^{2}}}$=$\sqrt{3}$,
平方得k2=3,
求得k=±$\sqrt{3}$,故$\frac{y}{x}$的取值范围是[-$\sqrt{3},\sqrt{3}$],
故选C.
点评 本题主要考查圆的切线性质,直线的斜率公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | log0.34<log0.36 | B. | 1.72.4>1.72.5 | C. | 2.50.2<2.40.2 | D. | log34>log43 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17\sqrt{6}}{2}$ 海里/时 | B. | 34$\sqrt{6}$海里/时 | C. | $\frac{17\sqrt{2}}{2}$海里/时 | D. | 34$\sqrt{2}$海里/时 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com