精英家教网 > 高中数学 > 题目详情

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:











 
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.

(Ⅰ)方程为         
(Ⅱ)存在直线满足条件,且的方程为:

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率

(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,已知椭圆的长轴为,过点的直线轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率

(1)求椭圆的标准方程;
(2)设是椭圆上异于的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点的中点.试判断直线与以为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段的中点分别为,且△ 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过做直线交椭圆于P,Q两点,使,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分 )已知椭圆经过点,一个焦点是
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆轴的两个交点为,点在直线上,直线分别与椭圆交于两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线的斜率分别为,证明
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)离心率为的椭圆的左、右焦点分别为是坐标原点.
(1)求椭圆的方程;
(2)若直线交于相异两点,且,求.(其中是坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上的点的最远距离是,求这个椭圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知是双曲线上不同的三点,且连线经过坐标原点,
若直线的斜率乘积,求双曲线的离心率;

查看答案和解析>>

同步练习册答案