精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知是双曲线上不同的三点,且连线经过坐标原点,
若直线的斜率乘积,求双曲线的离心率;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C的焦点F1(-,0)和F2,0),长轴长6。
(1)求椭圆C的标准方程。
(2)设直线交椭圆C于A、B两点,求线段AB的中点坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点
(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(1)中的点)的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为,离心率为.
(1)若,求椭圆的方程; (2)设直线与椭圆相交于两点,分别为线段的中点.若坐标原点在以为直径的圆上,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,定点M(1,0),椭圆短轴的端点是B1,B2,且 
(1)求椭圆C的方程;
(2)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线.(1)求抛物线对应的二次函数的解析式;
(2)求证以ON为直径的圆与直线相切;
(3)求线段MN的长(用表示),并证明M、N两
点到直线的距离之和等于线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:











 
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)求与双曲线有共同渐近线,并且经过点 (-3,)的双曲线方程.

查看答案和解析>>

同步练习册答案