已知椭圆
的离心率为
,定点M(1,0),椭圆短轴的端点是B1,B2,且
(1)求椭圆C的方程;
(2)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由,
科目:高中数学 来源: 题型:解答题
(本小题满分13分)在平面直角坐标系
中,已知椭圆
:
(
)的左焦点为
,且点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知直线
的斜率为2且经过椭圆
的左焦点.求直线
与该椭圆
相交的弦长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,已知椭圆
的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率![]()
![]()
(1)求椭圆的标准方程;
(2)设
是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆![]()
的离心率为
,定点
,椭圆短轴的端点是
,
,且
.
(1)求椭圆
的方程;
(2)设过点
且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为
,线段
的中点分别为
,且△
是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过
做直线
交椭圆于P,Q两点,使
,求直线
的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,过焦点
且不平行于
轴的动直线
交抛物线于
,
两点,抛物线在
、
两点处的切线交于点
.![]()
![]()
(Ⅰ)求证:
,
,
三点的横坐标成等差数列;
(Ⅱ)设直线
交该抛物线于
,
两点,求四边形
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com