精英家教网 > 高中数学 > 题目详情
19.已知a=2${\;}^{-\frac{2}{3}}$,$b={({\frac{1}{2}})^{\frac{4}{3}}}$,$c={2^{-\frac{1}{3}}}$,则下列关系式中正确的是(  )
A.a<c<bB.a<b<cC.b<a<cD.c<a<b

分析 利用指数函数的单调性求解.

解答 解:∵a=2${\;}^{-\frac{2}{3}}$,$b={({\frac{1}{2}})^{\frac{4}{3}}}$,$c={2^{-\frac{1}{3}}}$,
∴0<b=$(\frac{1}{2})^{\frac{4}{3}}$=${2}^{-\frac{4}{3}}$<a=2${\;}^{-\frac{2}{3}}$<c=${2}^{-\frac{1}{3}}$<20=1,
∴b<a<c.
故选:C.

点评 本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意指数函数单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1h,2h,加工一件乙设备所需工时分别为2h,1h.A、B两种设备每月有效使用台时数分别为400h和500h,分别用x,y表示计划每月生产甲,乙产品的件数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{x+1,(x≤0)}\\{{x}^{2}-2x+1,(x>0)}\end{array}\right.$.
(1)在如图所示的平面直角坐标系内作出函数f(x)的图象,并写出函数f(x)的单调区间(不需证明);
(2)求函数f(x)在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知奇函数f(x)的定义域为R,且f(x+$\frac{7}{2}$)=$\frac{1}{f(x)}$,f(4)>1,f(2012)=$\frac{2a+3}{a-1}$,则实数a的取值范围是-$\frac{2}{3}$<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线y=kx+1与圆x2+y2+kx-y-9=0的两个交点恰好关于y轴对称,则k等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=n2,数列{bn}满足b1=a1,bn+1(an+1-an)=bn
(1)求数列{an}和{bn}的通项公式;
(2)求数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“k=2且b=-1”是“直线y=kx+b过点(1,1)”的(  )
A.充分条件不必要B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:
资源
产品
资金(万元)场地(平方米)
A2100
B350
现有资金12万元,场地400平方米,生产每吨A种产品可获利润3万元;生产每吨B种产品可获利润2万元,分别用x,y表示计划生产A、B两种产品的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问A、B两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C:x2=4y与直线y=kx+a(a>0)交与M,N两点.
(1)当k=0时,分别求C在点M和N处的切线方程;
(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.

查看答案和解析>>

同步练习册答案