精英家教网 > 高中数学 > 题目详情
已知正项数列{an}满足:
an
-
an-1
=1,(n∈N+,n≥2),且a1=4.
(1)求{an}的通项公式;
(2)求证
1
a1
+
1
a2
+…+
1
an
<1(n∈N+
分析:(1)由等差数列的定义可知数列{
an
}
是等差数列,首项是2,公差为1,从而求出
an
的通项公式,即可求出{an}的通项公式;
(2)根据
1
ak
=
1
(k+1)2
1
k(k+1)
=
1
k
-
1
k+1
,代入
1
a1
+
1
a2
+…+
1
an
可证得不等式.
解答:解:(1)由题意可知数列{
an
}
是等差数列,首项是2,公差为1;
an
=2+(n-1)×1=n+1

∴an=(n+1)2
(2)证明:
1
ak
=
1
(k+1)2
1
k(k+1)
=
1
k
-
1
k+1

1
a1
+
1
a2
+…+
1
an
<1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
<1
点评:本题主要考查了等差数列的通项公式,以及利用放缩法和裂项求和法进行证明不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案