精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=xe2x-lnx-ax.
(1)当a=0时,求函数f(x)在[$\frac{1}{2}$,1]上的最小值;
(2)若?x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若?x>0,不等式f($\frac{1}{x}$)-1≥$\frac{1}{x}$e${\;}^{\frac{2}{x}}$+$\frac{\frac{1}{e-1}+\frac{1}{x}}{{e}^{\frac{x}{e}}}$恒成立,求a的取值范围.

分析 (1)a=0时,${f}^{'}(x)=(2x+1){e}^{2x}-\frac{1}{x}$,${f}^{''}(x)=(4x+4){e}^{2x}+\frac{1}{{x}^{2}}>0$,由此利用导数性质能求出函数f(x)在[$\frac{1}{2}$,1]上的最小值.
(2)${f}^{'}(x)=(2x+1){e}^{2x}-\frac{1}{x}-a$,函数f(x)在区间(0,x0)上递减,在(x0,+∞)上递增,由?x>0,不等式f(x)≥1恒成立,得lnx0+2x02${e}^{2{x}_{0}}$≤0,由此能求出a的取值范围.(3)由f($\frac{1}{x}$)-1≥$\frac{1}{x}{e}^{\frac{2}{x}}+\frac{\frac{1}{e-1}+\frac{1}{x}}{{e}^{\frac{x}{e}}}$,得a$≤xlnx-x-\frac{\frac{x}{e-1}+1}{{e}^{\frac{x}{e}}}$对任意x>0成立,令函数g(x)=xlnx-x-$\frac{\frac{x}{e-1}+1}{{e}^{\frac{x}{e}}}$,则${g}^{'}(x)=lnx+\frac{x-1}{e(e-1){e}^{\frac{x}{e}}}$,由此利用导数性质能求出a的取值范围.

解答 解:(1)a=0时,f(x)=xe2x-lnx,
∴${f}^{'}(x)=(2x+1){e}^{2x}-\frac{1}{x}$,${f}^{''}(x)=(4x+4){e}^{2x}+\frac{1}{{x}^{2}}>0$,
∴函数f′(x)在(0,+∞)上是增函数,
又函数f′(x)的值域为R,
故?x0>0,使得f′(x0)=(2x0+1)e${\;}^{2{x}_{0}}$-$\frac{1}{{x}_{0}}$=0,
又∵${f}^{'}(\frac{1}{2})=2e-2>0$,∴${x}_{0}<\frac{1}{2}$,∴当x∈[$\frac{1}{2},1$]时,f′(x)>0,
即函数f(x)在区间[$\frac{1}{2}$,1]上递增,∴$f(x)_{min}=f(\frac{1}{2})=\frac{e}{2}+ln2$.
(2)${f}^{'}(x)=(2x+1){e}^{2x}-\frac{1}{x}-a$,
由(1)知函数f′(x)在(0,+∞)上是增函数,且?x0>0,使得f′(x0)=0,
进而函数f(x)在区间(0,x0)上递减,在(x0,+∞)上递增,
$f(x)_{min}=f({x}_{0})={x}_{0}{e}^{2{x}_{0}}$-lnx0-ax0
由f′(x0)=0,得:(2x0+1)e${\;}^{2{x}_{0}}$-$\frac{1}{{x}_{0}}$-a=0,
∴$a{x}_{0}=(2{{x}_{0}}^{2}+{x}_{0}){e}^{2{x}_{0}}-1$,∴f(x0)=1-lnx0-2x02${e}^{2{x}_{0}}$,
∵?x>0,不等式f(x)≥1恒成立,
∴1-lnx0-2x02e${\;}^{2{x}_{0}}$≥1,∴lnx0+2x02${e}^{2{x}_{0}}$≤0,
设h(x0)=lnx0+2x${{\;}_{0}}^{2}$e${\;}^{2{x}_{0}}$,则h(x0)为增函数,且有唯一零点,设为t,
则h(t)=lnt+2t2e2t=0,则-lnt=2t2e2t,即$\frac{1}{t}ln\frac{1}{t}=2t{e}^{2t}$,
令g(x)=xex,则g(x)单调递增,且g(2t)=g($ln\frac{1}{t}$),
则2t=ln$\frac{1}{t}$,即${e}^{2t}=\frac{1}{t}$,
∵a=(2x0+1)${e}^{2{x}_{0}}$-$\frac{1}{{x}_{0}}$在(0,t]为增函数,
则当x0=t时,a有最大值,${a}_{max}=(2t+1){e}^{2t}-\frac{1}{t}$=$(2t+1)\frac{1}{t}-\frac{1}{t}=2$,
∴a≤2,∴a的取值范围是(-∞,2].
(3)由f($\frac{1}{x}$)-1≥$\frac{1}{x}{e}^{\frac{2}{x}}+\frac{\frac{1}{e-1}+\frac{1}{x}}{{e}^{\frac{x}{e}}}$,
得$\frac{1}{x}{e}^{\frac{2}{x}}-ln\frac{1}{x}-\frac{a}{x}-1≥\frac{1}{x}{e}^{\frac{2}{x}}+\frac{\frac{1}{e-1}+\frac{1}{x}}{{e}^{\frac{x}{e}}}$,
∴xlnx-x-a≥$\frac{\frac{x}{e-1}+1}{{e}^{\frac{x}{e}}}$,∴a$≤xlnx-x-\frac{\frac{x}{e-1}+1}{{e}^{\frac{x}{e}}}$对任意x>0成立,
令函数g(x)=xlnx-x-$\frac{\frac{x}{e-1}+1}{{e}^{\frac{x}{e}}}$,∴${g}^{'}(x)=lnx+\frac{x-1}{e(e-1){e}^{\frac{x}{e}}}$,
当x>1时,g′(x)>0,当0<x<1时,g′(x)<0,
∴当x=1时,函数g(x)取得最小值g(1)=-1-$\frac{\frac{1}{e-1}+1}{{e}^{\frac{1}{e}}}$=-1-$\frac{e}{(e-1){e}^{\frac{1}{e}}}$,
∴a≤-1-$\frac{e}{(e-1){e}^{\frac{1}{e}}}$.
∴a的取值范围是(-∞,-1-$\frac{e}{(e-1){e}^{\frac{1}{e}}}$).

点评 本题考查函数的最小值的求法,考查实数的取值范围的求法,是中档题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数y=sin(ωx-$\frac{π}{3}$)(ω>0)的最小正周期是π,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b为实数,则“ab<1”是“0<a<$\frac{1}{b}$”的(  ) 条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x||x|<1},B={x|2x<1},则A∩B=(  )
A.(-1,1)B.(0,1)C.$(0,\frac{1}{2})$D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设F是椭圆$\frac{x^2}{9}$+$\frac{y^2}{8}$=1的右焦点,点A(1,2),M是椭圆上一动点,则MA+MF取值范围为(6-2$\sqrt{2}$,6+2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若方程x2+y2-4x+2y+5k=0表示圆,则k的取值范围是(  )
A.k>1B.k<1C.k≥1D.k≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.线性约束条件$\left\{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{x+y-1≤0}\end{array}\right.$表示平面区域D,若在区域D上有无穷多个点(x,y),可使目标函数z=x+my取得最大值,则m=1或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\frac{ax-1}{x-a}$在(-∞,-1)上是增函数,则a的取值范围是a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{{a}^{2}}{2-b}$的取值范围是(  )
A.(0,+∞)B.(0,1)C.(0,$\frac{1}{2}$)D.[1,+∞)

查看答案和解析>>

同步练习册答案