精英家教网 > 高中数学 > 题目详情
7.线性约束条件$\left\{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{x+y-1≤0}\end{array}\right.$表示平面区域D,若在区域D上有无穷多个点(x,y),可使目标函数z=x+my取得最大值,则m=1或-1.

分析 由约束条件作差可行域,化目标函数为直线方程的斜截式,然后分m>0和m<0分类求解得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{x+y-1≤0}\end{array}\right.$作出平面区域D:

化目标函数z=x+my为$y=-\frac{1}{m}x+\frac{z}{m}$,
当m>0时,要使目标函数z=x+my取得最大值的点(x,y)有无穷多个,则$-\frac{1}{m}=-1$,得m=1;
当m<0时,要使目标函数z=x+my取得最大值的点(x,y)有无穷多个,则$-\frac{1}{m}=1$,得m=-1.
故答案为:1或-1.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A-BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边上一点P(-$\sqrt{3}$,m),且sinα=$\frac{\sqrt{2}m}{4}$,则实数m的值为(  )
A.$\sqrt{5}$或-$\sqrt{5}$B.$\sqrt{5}$或0C.-$\sqrt{5}$或0D.0或$\sqrt{5}$或-$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xe2x-lnx-ax.
(1)当a=0时,求函数f(x)在[$\frac{1}{2}$,1]上的最小值;
(2)若?x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若?x>0,不等式f($\frac{1}{x}$)-1≥$\frac{1}{x}$e${\;}^{\frac{2}{x}}$+$\frac{\frac{1}{e-1}+\frac{1}{x}}{{e}^{\frac{x}{e}}}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{-x,-1≤x≤0}\\{{x}^{2},0<x≤1}\\{2x,1<x≤2}\end{array}\right.$,求:
(1)f(-$\frac{2}{3}$),f($\frac{1}{2}$),f($\frac{3}{2}$)的值;
(2)作出函数的简图;
(3)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知凸n边形的内角和为f(n),则凸n+1边形的内角和f(n+1)=f(n)+180°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线x+$\sqrt{2}$y-1=0的斜率是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在边长为4的等边三角形ABC中,点D,E,F分别是边AB,AC,BC的中点,DC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的四棱锥P-ABFE,且PB=$\sqrt{10}$.
(1)求证:AB⊥平面POD;
(2)求四棱锥P-ABFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2$\sqrt{x}$+$\sqrt{5-x}$.
(1)求函数f(x)最大值,并求出相应的x的值;
(2)若关于x的不等式.f(x)≤|m-2|恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案