精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+sinx+4,f(lg(log210))=5,则f(lg(lg2))=(  )
A、-5B、-1C、3D、4
考点:函数的值
专题:函数的性质及应用
分析:f(lg(log210))=f(-lg(lg 2))=5,f(x)+f(-x)=8,由此能求出结果.
解答: 解:∵f(lg(log210))=f(-lg(lg 2))=5,
又∵f(x)=x3+sinx+4,∴f(x)+f(-x)=8,
∴f(-lg(lg2))+f(lg(lg2))=5+f(lg(lg2))=8,
∴f(lg(lg 2))=3,
故选:C.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意对数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ2-8ρcosθ+12=0,直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
(t为参数).
(Ⅰ)写出圆C的直角坐标方程;
(Ⅱ)若点P为圆C上的动点,求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若A=
π
6
,且AB=2,BC=1,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个算法,其流程图如图所示,则输出的结果是(  )
A、3B、9C、27D、81

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:①从投影的角度看,三视图和斜二测画法画出的直观图都是平行投影下画出来的空间图形;②平行投影的投影线互相平行,中心投影的投影线相交于一点;③空间图形经过中心投影后,直线仍是直线,但平行线可能变成了相交直线;④空间几何体在平行投影与中心投影下有不同的表现形式.其中真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若0<a<
1
2
,则下列不等式中正确的是(  )
A、loga(1-
1
a
)>1
B、ax≤(
1
2
x
C、cos(1+α)<cos(1-α)
D、(1-a)n<an(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图所示的程序框图,那么输出的s为(  )
A、2450B、2452
C、2550D、2552

查看答案和解析>>

科目:高中数学 来源: 题型:

一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“One”“World”,“One”,“Dream”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“One World One Dream”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为(  )
A、
1
12
B、
5
12
C、
7
12
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OA
=(cosα,sinα),
OB
=(1,-1),α∈[-
π
2
,0],则
OA
OB
夹角的取值范围为(  )
A、(0,
π
4
B、(
π
4
π
2
]
C、[0,
π
4
]
D、[
π
4
π
2
]

查看答案和解析>>

同步练习册答案