精英家教网 > 高中数学 > 题目详情
化简:
3
sin240°
-
1
cos240°
考点:二倍角的余弦,二倍角的正弦
专题:三角函数的求值
分析:把所给的式子通分后利用两角和的正弦公式、二倍角公式、诱导公式化简,可得结果.
解答: 解:
3
sin240°
-
1
cos240°
=
(
3
cos40°)
2
-sin240°
sin240°•cos240°
=
(
3
cos40°+sin40°)(
3
cos40°-sin40°)
1
4
•sin280°

=
4sin(60°+40°)•sin(60°-40°)
1
4
•sin280°
=
16sin100°sin20°
sin280°
=
16sin20°
sin80°
=
32sin10°cos10°
cos10°
=32sin10°.
点评:本题主要考查两角和的正弦公式、二倍角公式、诱导公式化简三角函数式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A={x|x>0},B={x|x>1},则A∩B=(  )
A、{x|0≤x<1}
B、{x|0<x≤1}
C、{x|x<0}
D、{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)求数列{an}前三项之和S3的值;
(2)证明:数列{an+an-1}(n≥2)是等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l,平面α、β,若l⊥α,l⊥β,求证:α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)A(n):A1,A2,A3,…,An与B(n):B1,B2,B3,…,Bn,其中n≥3,若同时满足:①两点列的起点和终点分别相同;②线段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,则称A(n)与B(n)互为正交点列.
(Ⅰ)试判断A(3):A1(0,2),A2(3,0),A3(5,2)与B(3):B1(0,2),B2(2,5),B3(5,2)是否互为正交点列,并说明理由;
(Ⅱ)求证:A(4):A1(0,0),A2(3,1),A3(6,0),A4(9,1)不存在正交点列B(4);
(Ⅲ)是否存在无正交点列B(5)的有序整数点列A(5)?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
a2-1
=1的离心率为
2
2
,上、下顶点分别为A、B,点P在椭圆C上,且异于点A、B,直线AP、BP与直线y=-3分别相交于点M、N,设直线AP、BP的斜率分别为k1、k2
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:k1•k2为定值;
(Ⅲ)求直线MN长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c∈R+,且满足a+b+c=2.
(Ⅰ)求abc的最大值;
(Ⅱ)证明:
1
a
+
1
b
+
1
c
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和Sn满足:Sn2-(n2+2n-3)Sn-3(n2+2n)=0(n∈N*
(Ⅰ)求证:Sn=n2+2n;
(Ⅱ)求数列{
1
Sn
}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为
 

查看答案和解析>>

同步练习册答案