精英家教网 > 高中数学 > 题目详情
18.已知球半径与一圆锥及一圆柱底半径相等,球直径与它们的高相等,圆锥、球、圆柱体积之比为1:2:3.

分析 设球半径为r,分另别求出圆锥、球、圆柱的体积,由此能求出圆锥、球、圆柱体积之比.

解答 解:设球半径为r,
则圆锥体积V1=$\frac{1}{3}$SH=$\frac{1}{3}π{r}^{2}•2r=\frac{2}{3}π{r}^{3}$,
球体积V2=$\frac{4}{3}{πr}^{3}$,
圆柱体积V3=SH=πr2•2r=2πr3
∴圆锥、球、圆柱体积之比为:1:2:3.
故答案为:1:2:3.

点评 本题考查圆锥、球、圆柱体积之比的求法,是中档题,解题时要认真审题,注意圆锥、球、圆柱的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,在正方体ABCD-A1B1C1D1中,E为棱D1C1的中点,试求$\overrightarrow{{A}_{1}{C}_{1}}$与$\overrightarrow{DE}$所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知偶函数y=f(x)对于任意的$x∈[0,\frac{π}{2})$满足f'(x)cosx+f(x)sinx>0(其中f'(x)是函数f(x)的导函数),则下列不等式中成立的是(  )
A.$\sqrt{2}f(-\frac{π}{3})<f(\frac{π}{4})$B.$\sqrt{2}f(-\frac{π}{3})<f(-\frac{π}{4})$C.$f(0)>\sqrt{2}f(-\frac{π}{4})$D.$f(\frac{π}{6})<\sqrt{3}f(\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,可以将函数$y=sin(2x+\frac{π}{6})$的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{bn}是等比数列,b9是3和5等差中项,则b1b17=(  )
A.25B.16C.9D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an}是等差数列,公差d>0,Sn是其前n项和,a1a4=22,S4=26.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Tn,求证:${T_n}<\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=mxln(x+1)+x+1,m∈R.
(Ⅰ)若直线l与曲线y=f(x)恒相切于同一定点,求l的方程;
(Ⅱ)当x≥0时,f(x)≤ex,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知Rt△ABC,点D为斜边BC的中点,$|{\overrightarrow{AB}}|=6\sqrt{3}$,$|{\overrightarrow{AC}}|=6$,$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{ED}$,则$\overrightarrow{AE}•\overrightarrow{EB}$等于(  )
A.-14B.-9C.9D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数λ的值为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案