精英家教网 > 高中数学 > 题目详情
3.已知{an}是等差数列,公差d>0,Sn是其前n项和,a1a4=22,S4=26.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Tn,求证:${T_n}<\frac{1}{6}$.

分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用“裂项求和”方法、数列的单调性即可证明.

解答 (1)解:∵a1a4=22,S4=26,∴a1(a1+3d)=22,4a1+$\frac{4×3}{2}$d=26,
解得a1=2,d=3;a1=11,d=-3(舍去).
∴an=2+3(n-1)=3n-1.
(2)证明:${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$$(\frac{1}{3n-1}-\frac{1}{3n+2})$,
数列{bn}的前n项和为Tn=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$
=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$<$\frac{1}{6}$.

点评 本题考查了等差数列的通项公式与求和公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列命题正确的是(  )
A.对于任意向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$
B.若向量$\overrightarrow{a}$与$\overrightarrow{b}$同向,且|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$.
C.向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点一定共线
D.单位向量的模都相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知奇函数f(x)满足f(x-2)=f(x),当0<x<l时,f(x)=2x,则f(log29)的值为(  )
A.9B.-$\frac{1}{9}$C.-$\frac{16}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$sinα=\frac{{4\sqrt{3}}}{7},cos(β-α)=\frac{13}{14},且0<β<α<\frac{π}{2}$.
(1)求tan2α的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知球半径与一圆锥及一圆柱底半径相等,球直径与它们的高相等,圆锥、球、圆柱体积之比为1:2:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(ax+1)lnx-ax+3,a∈R,g(x)是f(x)的导函数,e为自然对数的底数.
(1)讨论g(x)的单调性;
(2)当a>e时,证明:g(e-a)>0;
(3)当a>e时,判断函数f(x)零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正方形ADMN与矩形ABCD所在的平面相互垂直,AB=2AD=6,点E为线段AB上一点.

(1)若点E是AB的中点,求证:BM∥平面NDE;
(2)若二面角D-CE-M的大小为$\frac{π}{6}$,求出AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知非零向量$\overrightarrow a,\overrightarrow b$满足$({\overrightarrow b-2\overrightarrow a})⊥\overrightarrow b$,且$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow b)$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx(e为无理数,e≈2.718)
(1)求函数f(x)在点(e,f(e))处的切线方程;
(2)设实数$a>\frac{1}{2e}$,求函数f(x)在[a,2a]上的最小值.

查看答案和解析>>

同步练习册答案