【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.
(1)求的值及圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天行走的步数,同时也可以和其他用户进行运动量的或点赞.微信运动公众号为了解用户的一些情况,在微信运动用户中随机抽取了100名用户,统计了他们某一天的步数,数据整理如下:
(万步) | ||||||
(人) | 5 | 20 | 50 | 15 | 5 | 5 |
(1)根据表中数据,在如图所示的坐标平面中作出其频率分布直方图,并在纵轴上标明各小长方形的高;
(2)利用分层抽样的方法,从步数在(万步)中抽取7人,再从这7人中随机抽取2人,求步数在(万步)的人恰有1人的概率;
(3)这100名用户中,的用户为男生,这些男生的步数超过1.2万步的人为20人,是否有的把握认为运动步数超过1.2万步与性别有关?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在四边形中,,,,.把沿着翻折至的位置,平面,连结,如图2.
(1)当时,证明:平面平面;
(2)当三棱锥的体积最大时,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为正整数,区间(其中,)同时满足下列两个条件:
①对任意,存在使得;
②对任意,存在,使得(其中).
(Ⅰ)判断能否等于或;(结论不需要证明).
(Ⅱ)求的最小值;
(Ⅲ)研究是否存在最大值,若存在,求出的最大值;若不在在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆的右焦点为,过的直线与相交于两点,点满足.
(1)当的倾斜角为时,求直线的方程;
(2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:
(1)证明:平面平面
(2)求平面与平面所成二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com