精英家教网 > 高中数学 > 题目详情

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.

为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.

(1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较的大小关系;

(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布列和数学期望;

(3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)

【答案】1;(2的分布列为









;(3

【解析】试题分析:(1)根据茎叶图,得2数据的平均数为.

乙组数据的平均数为.

由茎叶图,知甲型号电视剧的星级卖场的个数,乙型号电视剧的星级卖场的个数,所以.

2)由题意,知的所有可能取值为0,1,2.

所以的分布列为


0

1

2





所以.

3)当时,达到最小值.

试题解析:(1)根据平均数的定义分别求出甲、乙两组数据的平均数,从而得到星级卖场的个数进行比较;(2)写出的所有可能取值,求出相应概率,列出分布列,求得数学期望;(3)根据方差的定义求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的正方体ABCDA1B1C1D1中,EFE1F1分别是棱ABADB1C1C1D1的中点,

求证:(1)

(2)∠EA1F=∠E1CF1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正四棱锥中, 为底面正方形的重心, 分别为侧棱的中点,有下列结论:

平面;②平面平面;③

④直线与直线所成角的大小为.

其中正确结论的序号是__________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线C的极坐标方程为ρ4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M10),倾斜角为

)求曲线C的直角坐标方程与直线l的参数方程;

)若曲线C经过伸缩变换后得到曲线C′,且直线l与曲线C′交于AB两点,求|MA|+|MB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为。在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点P坐标为,圆与直线交于两点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCDEPC的中点.

.求证:(PA∥平面BDE;()平面PAC⊥平面BDE(III)PB与底面所成的角为600, AB=2a,求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面,四边形是正方形,四边形是菱形,且,点分别为边的中点,点是线段上的动点.

(1)求证:

(2)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设人的某一特征(如眼睛的大小)是由他的一对基因所决定,d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,:

(1)1个孩子显露显性特征的概率是多少?

(2)“该父母生的2个孩子中至少有1个显露显性特征”,这种说法正确吗?

查看答案和解析>>

同步练习册答案