精英家教网 > 高中数学 > 题目详情

【题目】在棱长均相等的正四棱锥中, 为底面正方形的重心, 分别为侧棱的中点,有下列结论:

平面;②平面平面;③

④直线与直线所成角的大小为.

其中正确结论的序号是__________.(写出所有正确结论的序号)

【答案】①②③

【解析】如图,连接,易得,所以平面,结论①正确;同理

,所以平面平面,结论②正确;由于四棱锥的棱长均相等,所以

,所以,又,所以,结论③正确.由于分别为侧棱的中点,所以,又四边形为正方形,所以,所以直线与直线所成的角即为直线与直线所成的角,为,知三角形为等边三角形,所以,故④错误,故答案为①②③ .

【方法点晴】本题主要考查异面直线所成的角、线面平行的判定、面面平行的判定,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数在区间上单调递增,求的取值范围;

(Ⅱ)若函数的图象与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)记评分在以上(包括)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;

(Ⅱ)根据表中数据完成下面茎叶图;

)分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面

1)在上求作点,使平面,请写出作法并说明理由;

2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段, 为垂足,点在线段上,且,点在圆上运动。

(1)求点的轨迹方程;

(2)过定点的直线与点的轨迹交于两点,在轴上是否存在点使为常数,若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)函数,若的极值点,求的值并讨论的单调性;

(2)函数有两个不同的极值点,其极小值为为,试比较的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示单位:cm,四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.

为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.

(1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较的大小关系;

(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布列和数学期望;

(3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EAA1的中点,画出过D1CE的平面与平面ABB1A1的交线,并说明理由.

查看答案和解析>>

同步练习册答案