精英家教网 > 高中数学 > 题目详情

【题目】在圆上任取一点,过点轴的垂线段, 为垂足,点在线段上,且,点在圆上运动。

(1)求点的轨迹方程;

(2)过定点的直线与点的轨迹交于两点,在轴上是否存在点使为常数,若存在,求出点的坐标;若不存在,请说明理由。

【答案】(1) (2)

【解析】试题分析:(1)由转移法求动点轨迹:先设M(xy),P(x0y0),根据条件得x0xy0y.再代入已知动点轨迹,化简即得点M的轨迹方程(2)以算探索存在性问题:直线AB的方程为yk(x+1)(k≠0),A(x1y1),B(x2y2),N(n,0),根据向量数量积坐标表示可得=(1+k2)x1·x2+(x1x2)(k2n)+n2k2

,利用直线方程与椭圆方程联立方程组,结合韦达定理可得关于k的关系式,而由题意得与k无关的常数,所以解得n,即得点的坐标

试题解析:(1)设P(x0y0),M(xy),则x0xy0y.

P(x0y0)在x2y2=4上,∴xy=4.

x2+2y2=4,即=1.

M的轨迹方程为=1(x≠±2).

(2)假设存在.当直线ABx轴不垂直时,

设直线AB的方程为yk(x+1)(k≠0),A(x1y1),B(x2y2),N(n,0),

联立方程组

整理得(1+2k2)x2+4k2x+2k2-4=0,

x1x2=-x1x2.

·=(x1ny1)·(x2ny2)

=(1+k2)x1·x2+(x1x2)(k2n)+n2k2

=(1+k2+(k2nk2n2

n2

n2

(2n2+4n-1)-.

·是与k无关的常数,∴2n=0.

n=-,即N,此时·=-.

当直线ABx轴垂直时,若n=-,则·=-.

综上所述,在x轴上存在定点N,使·为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:,并得到如下频率分布直方图.

(I)求图中的值,并根据频率分布直方图统计这600名志愿者中年龄在的人数;

(II)在抽取的100名志愿者中按年龄分层抽取5名参加区电视台“文明伴你行”节目录制,再从这5名志愿者中随机抽取2名到现场分享劝导制止行人闯红灯的经历,求至少有1名年龄不低于35岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对[2555]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低碳族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

[2530)

120

0.6

第二组

[3035)

195

第三组

[3540)

100

0.5

第四组

[4045)

0.4

第五组

[4550)

30

0.3

第六组

[5055]

15

0.3

(1)补全频率分布直方图并求 的值;

(2)从年龄段在[4050)低碳族中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[445)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到如图所示的频率分布直方图:

(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

(2)若用分层抽样的方法从分数在的学生中共抽取人,该人中成绩在的有几人?

(3)在(2)中抽取的人中,随机抽取人,求分数在人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂36名工人的年龄数据如下表.

工人编号 年龄

工人编号 年龄

工人编号 年龄

工人编号 年龄

 1   40

 10   36

 19   27

 28   34

 2   44

 11   31

 20   43

 29   39

 3   40

 12   38

 21   41

 30   43

 4   41

 13   39

 22   37

 31   38

 5   33

 14   43

 23   34

 32   42

 6   40

 15   45

 24   42

 33   53

 7   45

 16   39

 25   37

 34   37

 8   42

 17   38

 26   44

 35   49

 9   43

 18   36

 27   42

 36   39

(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;

(2)计算(1)中样本的均值x和方差s2

(3)36名工人中年龄在之间有多少人?所占的百分比是多少(精确到0.01%)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正四棱锥中, 为底面正方形的重心, 分别为侧棱的中点,有下列结论:

平面;②平面平面;③

④直线与直线所成角的大小为.

其中正确结论的序号是__________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时, ,则称为“偏对函数”.现给出四个函数: . 则其中是“偏对称函数”的函数个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为。在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点P坐标为,圆与直线交于两点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

同步练习册答案