精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ) 求函数的单调区间;

(Ⅱ) 时,求函数上最小值.

【答案】()见解析;()时,函数的最小值是;当时,函数的最小值是

【解析】

1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数fx)的单调区间;
2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0aln 2时,函数fx)的最小值是-a;当a≥ln2时,函数fx)的最小值是ln2-2a

函数的定义域

因为,令,可得
时,;当时,

综上所述:可知函数的单调递增区间为,单调递减区间为

,即时,函数在区间上是减函数,
的最小值是

,即时,函数在区间上是增函数,

的最小值是

,即时,函数上是增函数,在上是减函数.

时,的最小值是
时,的最小值为

综上所述,结论为当时,函数的最小值是
时,函数的最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了解数学题获取软件激活码的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22依此类推.求满足如下条件的最小整数NN>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是

A. 440B. 330

C. 220D. 110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十三届全国人大二次会议于201935日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:

收看

没收看

合计

男生

40

女生

30

60

合计

1)请完成列联表;

2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001

附:,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,边所在直线的方程分别为.

1)求边上的高所在的直线方程;

2)若圆过直线上一点及点,当圆面积最小时,求其标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA'B'C'AC2BC4,∠ACB120°,∠ACC'90°,且平面AB'C⊥平面ABC,二面角A'ACB'30°EF分别为A'CB'C'的中点.

1)求证:EF∥平面AB'C

2)求B'到平面ABC的距离;

3)求二面角ABB'C'的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:

x

2

3

4

5

Y

18

27

32

35

1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.

参考公式:用最小二乘法求线性回归方程的系数公式:

参考数据:2×18+3×27+4×32+5×35=420

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)当存在三个不同的零点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数fx)的最小值为8,求实数a的值;

(Ⅱ)若函数gx)=|fx|+fx)﹣164个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案