精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点.

(1)求椭圆C的方程;

(2)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.

若直线AB的斜率为,求四边形APBQ面积的最大值;

当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.

【答案】(1);(2)①

【解析】

(1)根据抛物线焦点,求得b,再由离心率和椭圆中a、b、c的关系求得a、c的值,进而得到椭圆的标准方程。

(2)设出A、B的坐标联立直线与椭圆的方程,结合韦达定理求得x1+x2=-2t,x1x2=2t2-4;由直线x=2与椭圆交于P,Q两点可求得P,Q两点的坐标,则四边形APBQ的面积S=SAPQ+SBPQ即可得到面积的最大值;设出直线方程,联立椭圆方程,化简得到关于x的一元二次方程,利用韦达定理得到AB斜率的表达形式,即可得到斜率为定值。

(1)设椭圆C的方程为=1(a>b>0),由题意可得它的一个顶点恰好是抛物线x2=4y的焦点(0,),b=.

再根据离心率,求得a=2,

∴椭圆C的方程为=1.

(2)①设A(x1,y1),B(x2,y2),AB的方程为y=x+t,代入椭圆C的方程化简可得x2+2tx+2t2-4=0,Δ=4t2-4(2t2-4)>0,求得-2<t<2.

由根与系数的关系可得x1+x2=-2t,x1x2=2t2-4.

=1,x=2求得P(2,1),Q(2,-1),

∴四边形APBQ的面积S=SAPQ+SBPQ=·PQ·|x1-x2|=×2×|x1-x2|=|x1-x2|=,

故当t=0,四边形APBQ的面积S取得最大值为4.

②当∠APQ=BPQ,PA,PB的斜率之和等于零,PA的斜率为k,PB的斜率为-k,PA的方程为y-1=k(x-2),把它代入椭圆C的方程化简可得(1+4k2)x2+8k(1-2k)x+4(1-2k)2-8=0,

x2+2=.

同理可得直线PB的方程为y-1=-k(x-2),x2+2=,

x1+x2=,x1-x2=.

AB的斜率k=

=

=

=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中如像招数五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升。其大意为官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3,在该问题中第3天共分发大米(

A. 192 B. 213 C. 234 D. 255

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.

(1)求证:AC平分∠BAD;
(2)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx+1的导数满足,其中常数a,b∈R.

(1)求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)设,求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有两个零点,求的取值范围;

(Ⅱ)证明:当时,关于的不等式上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知, , 是正三角形, .

(1)求证:平面平面

(2)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆O为△ABC的外接圆,过点C作圆O的切线交AB的延长线于点D,∠ADC的平分线交AC于点E,∠ACB的平分线交AD于点H.

(1)求证:CH⊥DE;
(2)若AE=2CE.证明:DC=2DB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n1}的前n项和(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案