精英家教网 > 高中数学 > 题目详情

【题目】某服装加工厂为了提高市场竞争力,对其中一台生产设备提出了甲、乙两个改进方案:甲方案是引进一台新的生产设备,需一次性投资1000万元,年生产能力为30万件;乙方案是将原来的设备进行升级改造,需一次性投入700万元,年生产能力为20万件.根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,无论是引进新生产设备还是改造原有的生产设备,设备的使用年限均为6年,该产品的销售利润为15/件(不含一次性设备改进投资费用).

1)根据年销售量的频率分布直方图,估算年销量的平均数(同一组中的数据用该组区间的中点值作代表);

2)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.

①根据频率分布直方图估计年销售利润不低于270万元的概率:

②若以该生产设备6年的净利润的期望值作为决策的依据,试判断该服装厂应选择哪个方案.6年的净利润=6年销售利润-设备改进投资费用)

【答案】119.8万件(2)①0.6 ②乙方案.

【解析】

1)利用小矩形的中点乘以小矩形的面积之和,从而求得平均数;

2)①由题意得只有当年销售量不低于18万件时年销售利润才不低于270万,再从频率分布直方图中,估计年销售利润不低于270万的概率;

②分别计算两种方案6年的净利润的期望值,再比较大小,从而得到结论。

1)年销量的平均数(万件).

2)①该产品的销售利润为15/件,

由题意得只有当年销售量不低于18万件时年销售利润才不低于270万,

所以年销售利润不低于270万的概率.

②设甲方案的年销售量为X万件,由(1)可知甲方案的年销售量的期望

所以甲方案6年的净利润的期望值为(万元).

设乙方案的年销售量为Y万件,则乙方案的年销售量的分布列为

Y

12

16

20

P

0.05

0.35

0.6

所以乙方案的年销售量期望(万件),

所以乙方案6年的净利润的期望值为(万元),

因为乙方案的净利润的期望值大于甲方案的净利润的期望值,

所以企业应该选择乙方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省高考改革方案指出:该省高考考生总成绩将由语文数学英语3门统一高考成绩和学生从思想政治、历史、地理、物理、化学、生物6门等级性考试科目中自主选择3个,按获得该次考试有效成绩的考生(缺考考生或未得分的考生除外)总人数的相应比例的基础上划分等级,位次由高到低分为A、B、C、D、E五等21级,该省的某市为了解本市万名学生的某次选考化学成绩水平,统计在全市范围内选考化学的原始成绩,发现其成绩服从正态分布 ,现从某校随机抽取了名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.

(1)估算该校名学生成绩的平均值(同一组中的数据用该组区间的中点值作代表);

(2)现从该校名考生成绩在的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前名的人数记为,求随机变量的分布列和数学期望.参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有两个零点,求a的取值范围;

(Ⅱ)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx3,gx)=alnx2xaR.

1)讨论gx)的单调性;

2)是否存在实数a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明和父母都喜爱《中国好声音》这栏节目,日晚在鸟巢进行中国好声音终极决赛,四强选手分别为李荣浩战队的邢晗铭,那英战队的斯丹曼簇,王力宏战队的李芷婷,庾澄庆战队的陈其楠,决赛后四位选手相应的名次为,某网站为提升娱乐性,邀请网友在比赛结束前对选手名次进行预测.现用表示某网友对实际名次为的四位选手名次做出的一种等可能的预测排列,是该网友预测的名次与真实名次的偏离程度的一种描述.

1)求的分布列及数学期望;

2)按(1)中的结果,若小明家三人的排序号与真实名次的偏离程度都是,计算出现这种情况的概率(假定小明家每个人排序相互独立).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差数列,△ABC的面积为2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,AC6BABC5ADCD3 .

1)求证:ACBD

2)当四面体ABCD的体积最大时,求点A到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中常数是自然对数的底数.

1)若,求上的极大值点;

2)(i)证明上单调递增;

ii)求关于x的方程上的实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S-ABC中,侧棱SASBSC两两成等角,且长度分别为abc,设二面角S-BC-AS-ACBS-AB-C的大小为,若αβγ的大小关系是(

A.B.C.D.

查看答案和解析>>

同步练习册答案