【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+
).
(1)求A;
(2)若b,
a,c成等差数列,△ABC的面积为2
,求a.
【答案】(1)
; (2)
.
【解析】
(1)由正弦定理化简已知可得sinA=sin(A+
),结合范围A∈(0,π),即可计算求解A的值;
(2)利用等差数列的性质可得b+c=
,利用三角形面积公式可求bc的值,进而根据余弦定理即可解得a的值.
(1)∵asinB=bsin(A+
).
∴由正弦定理可得:sinAsinB=sinBsin(A+
).
∵sinB≠0,
∴sinA=sin(A+
).
∵A∈(0,π),可得:A+A+
=π,
∴A=
.
(2)∵b,
a,c成等差数列,
∴b+c=
,
∵△ABC的面积为2
,可得:S△ABC=
bcsinA=2
,
∴
=2
,解得bc=8,
∴由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccos![]()
=(b+c)2﹣3bc=(
a)2﹣24,
∴解得:a=2
.
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为
,已知
且
.
![]()
(1)求角
;
(2)如图,D为△ABC外一点,若在平面四边形ABCD中,
,求△ACD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆O:
与坐标轴分别交于A1,A2,B1,B2(如图).
(1)点Q是圆O上除A1,A2外的任意点(如图1),直线A1Q,A2Q与直线
交于不同的两点M,N,求线段MN长的最小值;
(2)点P是圆O上除A1,A2,B1,B2外的任意点(如图2),直线B2P交x轴于点F,直线A1B2交A2P于点E.设A2P的斜率为k,EF的斜率为m,求证:2m﹣k为定值.
![]()
(图1) (图2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果数列
的任意连续三项均能构成一个三角形的三边长,则称
为三角形”数列对于“三角形”数列
,如果函数
使得
仍为一个三角形”数列,则称
是数列
的“保三角形函数”
.
(1)已知
是首项为2,公差为1的等差数列,若
,
是数列
的保三角形函数”,求
的取值范围;
(2)已知数列
的首项为2019,
是数列
的前
项和,且满足
,证明
是“三角形”数列;
(3)求证:函数
,
是数列1,
,
的“保三角形函数”的充要条件是
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现对一块边长8米的正方形场地ABCD进行改造,点E为线段BC的中点,点F在线段CD或AD上(异于A,C),设
(米),
的面积记为
(平方米),其余部分面积记为
(平方米).
(1)当
(米)时,求
的值;
(2)求函数
的最大值;
(3)该场地中
部分改造费用为
(万元),其余部分改造费用为
(万元),记总的改造费用为W(万元),求W取最小值时x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的电子新产品未上市时,原定每件售价100元,经过市场调研发现,该电子新产品市场潜力很大,该公司决定从第一周开始销售时,该电子产品每件售价比原定售价每周涨价4元,5周后开始保持120元的价格平稳销售,10周后由于市场竞争日益激烈,每周降价2元,直到15周结束,该产品不再销售.
(Ⅰ)求售价
(单位:元)与周次
(
)之间的函数关系式;
(Ⅱ)若此电子产品的单件成本
(单位:元)与周次
之间的关系式为
,
,
,试问:此电子产品第几周的单件销售利润(销售利润
售价
成本)最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com