精英家教网 > 高中数学 > 题目详情

【题目】现对一块边长8米的正方形场地ABCD进行改造,点E为线段BC的中点,点F在线段CDAD上(异于AC),设(米),的面积记为(平方米),其余部分面积记为(平方米).

1)当(米)时,求的值;

2)求函数的最大值;

3)该场地中部分改造费用为(万元),其余部分改造费用为(万元),记总的改造费用为W(万元),求W取最小值时x的值.

【答案】12323

【解析】

1)当米时,点F在线段CD上,利用算出即可

2)分两种情况讨论,分别求出最大值,再作比较

3,利用基本不等式可求出其取得最小值时,然后再分两种情况讨论

1)由题知:当米时,点F在线段CD上,

所以

所以(平方米)

2)由题知,当(米)时,点F在线段AD

此时:(平方米)

(米)时,点F在线段CD上,

所以

所以

因为,所以,等号当且仅当时,即时取得

所以最大值为32

3)因为,所以:

(万元)

等号当且仅当时取得,即时取得

(米)时,点F在线段AD上,

(米)时,点F在线段CD上,

综上的W取最小值时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两个定点 动点满足,设动点的轨迹为曲线,直线.

1)求曲线的轨迹方程;

2)若与曲线交于不同的两点,且 (为坐标原点),求直线的斜率;

3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点,若存在定点请写出坐标,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,),且数列是首项为,公差为的等差数列.

1)求证:数列是等比数列;

2)若,当时,求数列的前项和的最小值;

3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在处按方向释放机器人甲,同时在处按某方向释放机器人乙,设机器人乙在处成功拦截机器人甲,若点在矩形区城(包含边界),则挑战成功,否则挑战失败,已知米,中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线远动方式行进.

1)如图建系,求的轨迹方程;

2)记的夹角为,如何设计的长度,才能确保无论的值为多少,总可以通过设置机器人乙的释放角度使之挑战成功?

3)若的夹角为足够长,则如何设置机器人乙的释放角度,才能挑战成功?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差数列,△ABC的面积为2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.

(1)求证:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB.如果△AMD的面积为1,试求能够放入这个棱锥的最大球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴的交点为,与轴正方向同向的单位向量分别是,且的夹角为,其中。由平面向量基本定理,对于平面内的向量,存在唯一有序实数对,使得,把叫做点在斜坐标系中的坐标,也叫做向量在斜坐标系中的坐标。在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如时,方程表示斜坐标系内一条过点(2,1),且方向向量为(4,-5)的直线。

(1)若 ,且的夹角为锐角,求实数m的取值范围;

(2)若,已知点和直线 ①求l的一个法向量;②求点A到直线l的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的奇偶性,并证明;

2)用定义证明函数上单调递减;

3)若,求的取值范围.

查看答案和解析>>

同步练习册答案