精英家教网 > 高中数学 > 题目详情
14.函数$f(x)=\frac{ax}{{{x^2}+1}}(a>0)$的单调递增区间是(  )
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)

分析 先对函数求导,然后由y’>0可得x的范围,从而可得函数的单调递增区间.

解答 解:f′(x)=a•$\frac{1{-x}^{2}}{{(1{+x}^{2})}^{2}}$,(a>0),
令f′(x)>0,解得:-1<x<1,
故f(x)在(-1,1)递增,
故选:B.

点评 本题主要考查了函数的导数与函数的单调性关系及应用,导数法是求函数的单调区间的基本方法,一定要熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若x=$\frac{π}{4}$是函数f(x)的一条对称轴,则实数ω的值可以是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
x12345
y7.06.55.53.82.2
(Ⅰ)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

则第n个图案中的地面砖共有5n+2块.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x2,则f′(1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图中的网格纸是边长为1的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为(  )
A.12B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点分别为F1、F2,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,若|MF1|-|MF2|=2b,该双曲线的离心率为e,则e2=(  )
A.2B.$\frac{\sqrt{2}+1}{2}$C.$\frac{3+2\sqrt{2}}{2}$D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.原点与极点重合,x轴正半轴与极轴重合,则点(2,-2$\sqrt{3}$)的极坐标是(  )
A.(4,$\frac{π}{3}$)B.(4,$\frac{4π}{3}$)C.(-4,-$\frac{2π}{3}$)D.(4,-$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.$\frac{32}{3}$D.16

查看答案和解析>>

同步练习册答案