精英家教网 > 高中数学 > 题目详情
14.关天x的方程x2-x+m=0.
(1)若方程有两个实根,且一个比2小,一个比3大,求实数m的范围;
(2)若方程有且只有一个正根,求实数m的范围.

分析 由条件利用一元二次方程根的分布与系数的关系,二次函数的性质,求得m的范围.

解答 解:(1)设f(x)=x2-x+m,根据天x的方程x2-x+m=0有两个实根,且一个比2小,一个比3大,
可得$\left\{\begin{array}{l}{f(2)=2+m<0}\\{f(3)=6+m<0}\end{array}\right.$,求得m<-6.
(2)根据天x的方程x2-x+m=0有只有一个正根,可得$\left\{\begin{array}{l}{△=1-4m=0}\\{两根之和等于1,大于零}\\{两根之积m>0}\end{array}\right.$,求得m=$\frac{1}{4}$.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.给出以下四个命题:
①正态曲线当μ一定时曲线形状由σ确定,σ越小曲线越“瘦高”表示总体分布越集中;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是x+y-1=0;
③函数f(x)=2x+2x-3在定义域内有且只有一个零点;
④回归方程拟合效果可用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻画,R2越接近1表示回归效果越差;
其中正确命题的序号为①③.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+2ax-3.
(1)求实数a的取值范围,使得y=f(x)在区间[-4,6]上是单调函数;
(2)当x∈[-4,6]时,求f(x)的最小值g(a);
(3)画出分段函数g(x)图象,求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数k∈[-2,3],则函数f(x)=kx+1在[-1,1]上恒大于0的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足A=60°,sinB+sinC=2sinA,bc=5,则a的值为(  )
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列各组中,集合P与M不能建立映射的是①(填序号).
①P={0},M=∅;
②P={1,2,3,4,5},M={2,4,6,8};
③P={有理数},M={数轴上的点};
④P={平面上的点},M={有序实数对}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等差数列{an}的公差为整数,且a4=a32-28,a5=10,
(1)求数列{an}的通项公式;
(2)设bn=a3n+1,若数列{bn}的前n项和Sn=350,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,试求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设A={x||2x-3|<5},B={x||x-$\frac{3}{2}$|$≥\frac{5}{2}$},求A∩B,A∪B.

查看答案和解析>>

同步练习册答案